

Introduction of GGBS concrete

Introduction of Quon Hing

Established in 1985 and registered in Hong Kong as a subsidiary of NWS Holdings.

One of the ready-mix concrete, instant mortar and precast concrete provider to construction and infrastructure industry in Hong Kong.

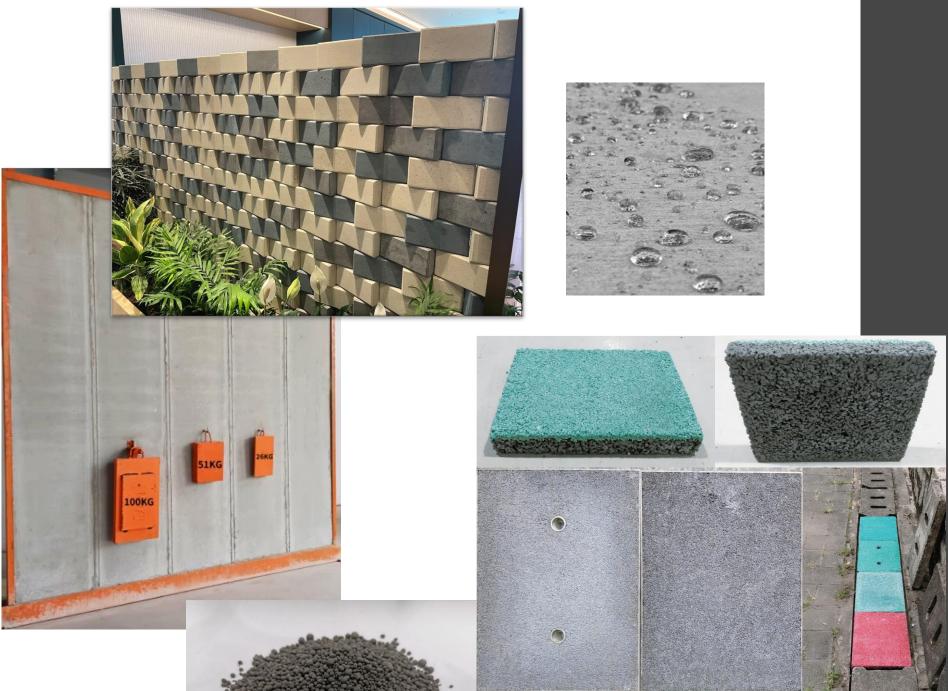
Concrete

- Two concrete production plants in Tsing Yi and Tai Po
- Annual production capacity more than 750,000m3
- Concrete supplied up to C100
- All GGBS, PFA concrete mixes with Platinum Green Label

MiC

- •
- concrete elements

Operates three industrial parks in GBA, annual production capacity more than 230,000T


With 25 years of engineering experience in the Guangdong-Hong Kong-Macao

Specializing in the production of MiC and precast

Quon Hing's Green Products

Green and Sustainable Concrete Products

- Negative/Low Carbon Concrete
- Tivoli Green Wall System (Lightweight partition wall)
- H-Crete (Waterproofing Concrete System)
- Smart Drainage Cover (Material for sponge city)
- Capsule Concrete (Lightweight structural concrete)

Contents

Introduction of GGBS

- Manufacturing Process
- Pozzolanic Materials
- Specification Standard in Hong Kong

Application of GGBS concrete

- Solutions
- Lab Trial/Job reference

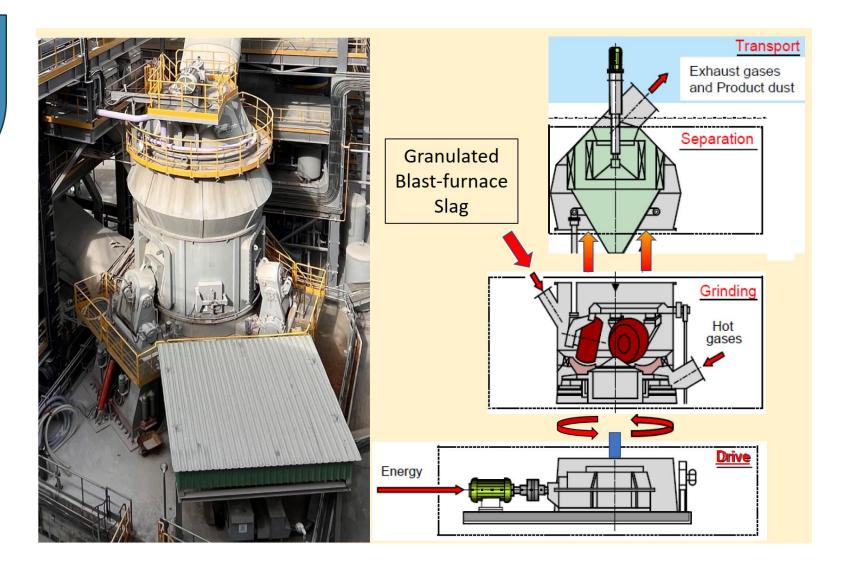
Sustainable Construction Solutions

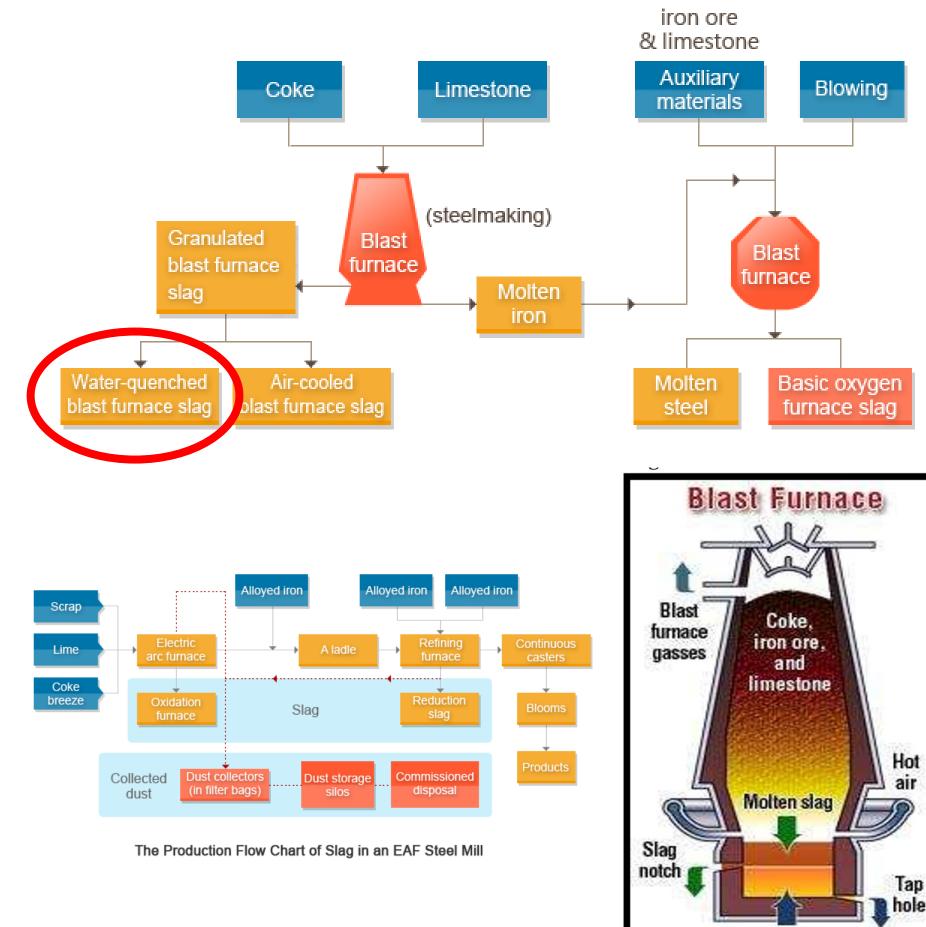
- ESG benefits
- Carbon footprint of GGBS concrete Ultrafine GGBS
- Application of ultrafine GGBS
- Oversea research references

Advantages & Disadvantages of GGBS Concrete

Innovative Construction Methods –

1. INTRODUCTION OF GGBS -WHAT IS GGBS?


Blast Furnace Slag


Granulated Blast Furnace Slag

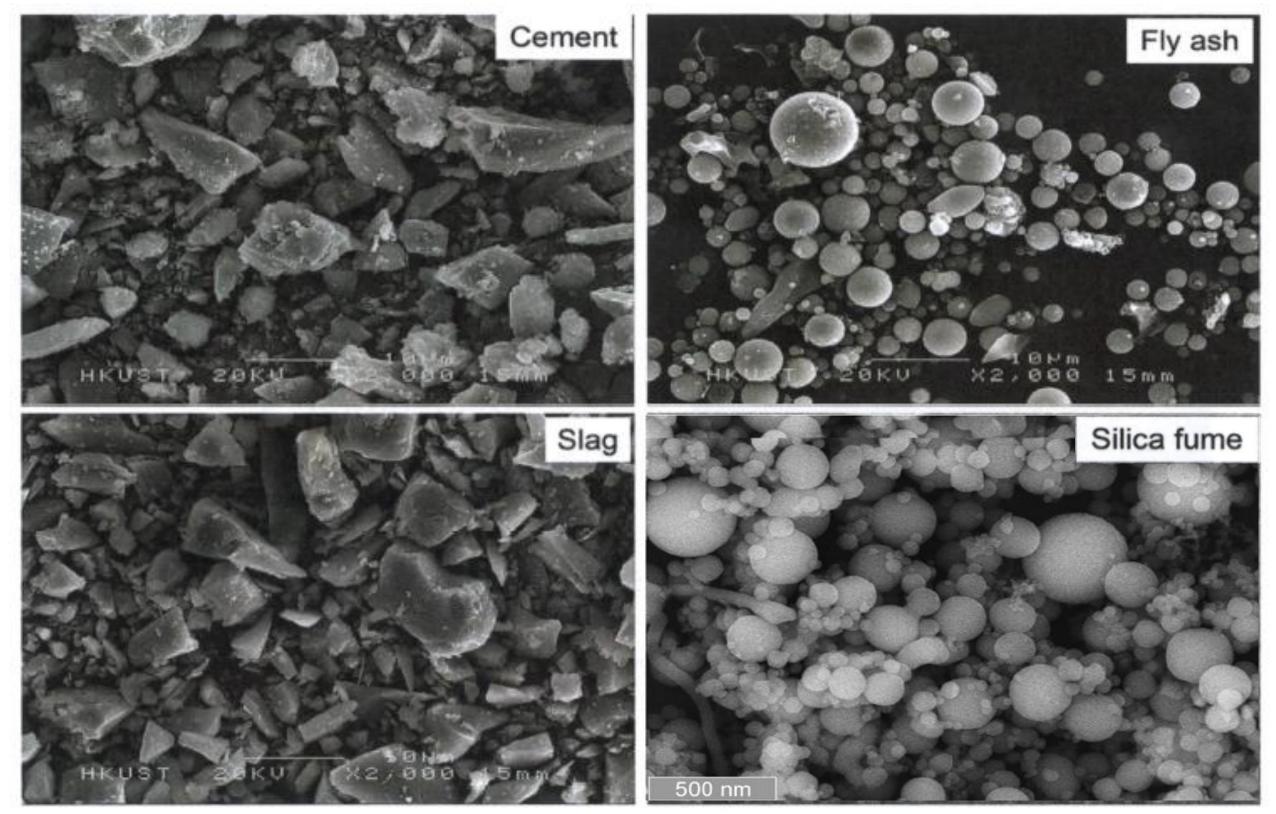
Ground Granulated Blast Furnace Slag

Manufacturing Process

- blast furnace slag.
- in a converter
- furnace slag.

Molten iron

• Blast-Furnace Slag (BFS)


Production process of smelting iron ore, coke, limestone, and other raw materials in a blast furnace is known as

• Basic-Oxygen-Furnace Slag (BOFS) Produced during the process of converting molten iron from a blast furnace into steel

Electric-Arc-Furnace Slag (EAFS) Production process of melting scrap steel at high temperatures using an electric arc furnace, where scrap steel is the primary raw material, is known as electric arc

Binding Materials

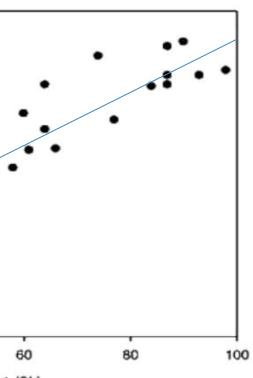
• The following material are normally used to produce a robust paste

Chemical Composition Of SCM-GGBS

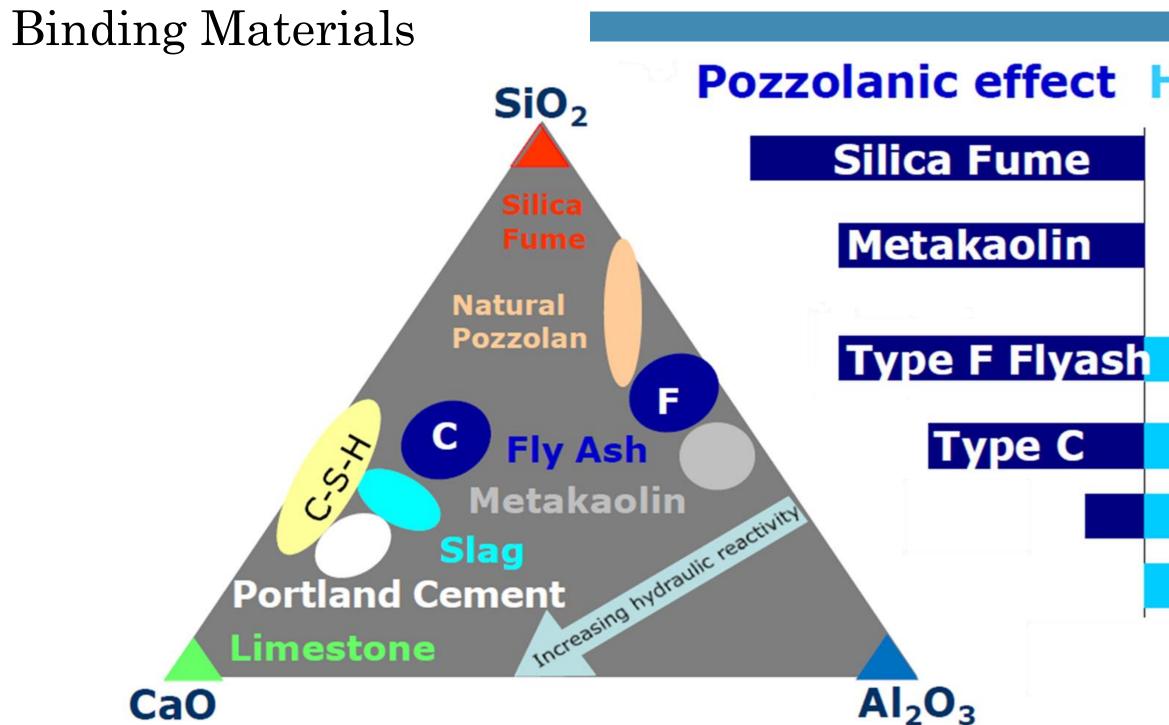
Range for Chemical Composition of Slag					
Composition	Usual range	Typical range			
Silicon Dioxide (SiO ₂₎	30-45	36			
Aluminum Oxide (Al ₂ O ₃₎	8-20	16.0			
Calcium Oxide (CaO)	35-50	43.3			
Magnesium Oxide (MgO)	0-20	7			
Ferrous Oxide (FeO)	0–1.6	0.4			
Sulfide sulfur (S)	0-2	1.5			
Manganese Oxide (Mn ₂ O ₃)	0-2.5	< 0.1			

By-products: sustainability in society

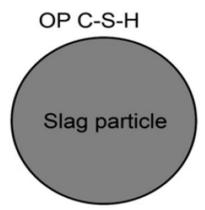
As the glass phase content constitutes one of the essential features of slag, various methods have been proposed for measuring the degree of crystallinity. Owing to stress birefringence, it is difficult to distinguish between the crystalline phase and the stressed glassy phase.


From SEM, it is found that potassium and sulphur are localized mainly in the glass and that distribution of the elements is revealed.

With reference to crystalline phases, it has recently been shown that the richer the slag is in akermanite, the less readily it hydrates.


Graphical Representation of Chemical Composition of Slag 22 20 strength (MPa) at 3 days Amorphous Content > 90 % (Best 95%) 18 Wollastonite Pseudo-Woll 16 Merwinite 14 12 10 $\frac{\text{CaO} + \text{MgO} + \frac{1}{3}\text{Al}_2\text{O}_3}{\text{SiO}_2 + \frac{2}{3}\text{Al}_2\text{O}_3} \ge 1.0$ Compressive Sig 20 Periclase 2 Total amount of SiO2+MgO+CaO>66% 20 40 CaO

Glass content (%)

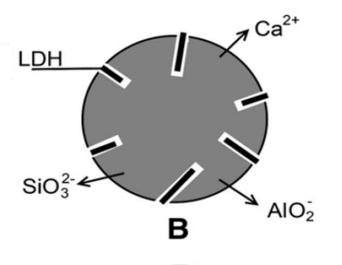

The pozzolanic reaction refers to the reaction of amorphous SiO2 and Al2O3 with Ca(OH)2, resulting • in the formation of C–S–H and C-A-H gel

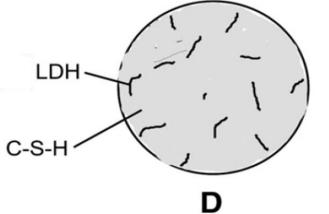
$$3Ca(OH)_2 + 2SiO_2 \rightarrow 3CaO \cdot 2SiO_2 \cdot 3H_2O$$

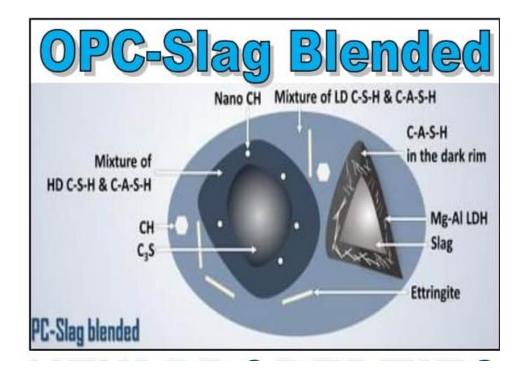
CH C - S - H

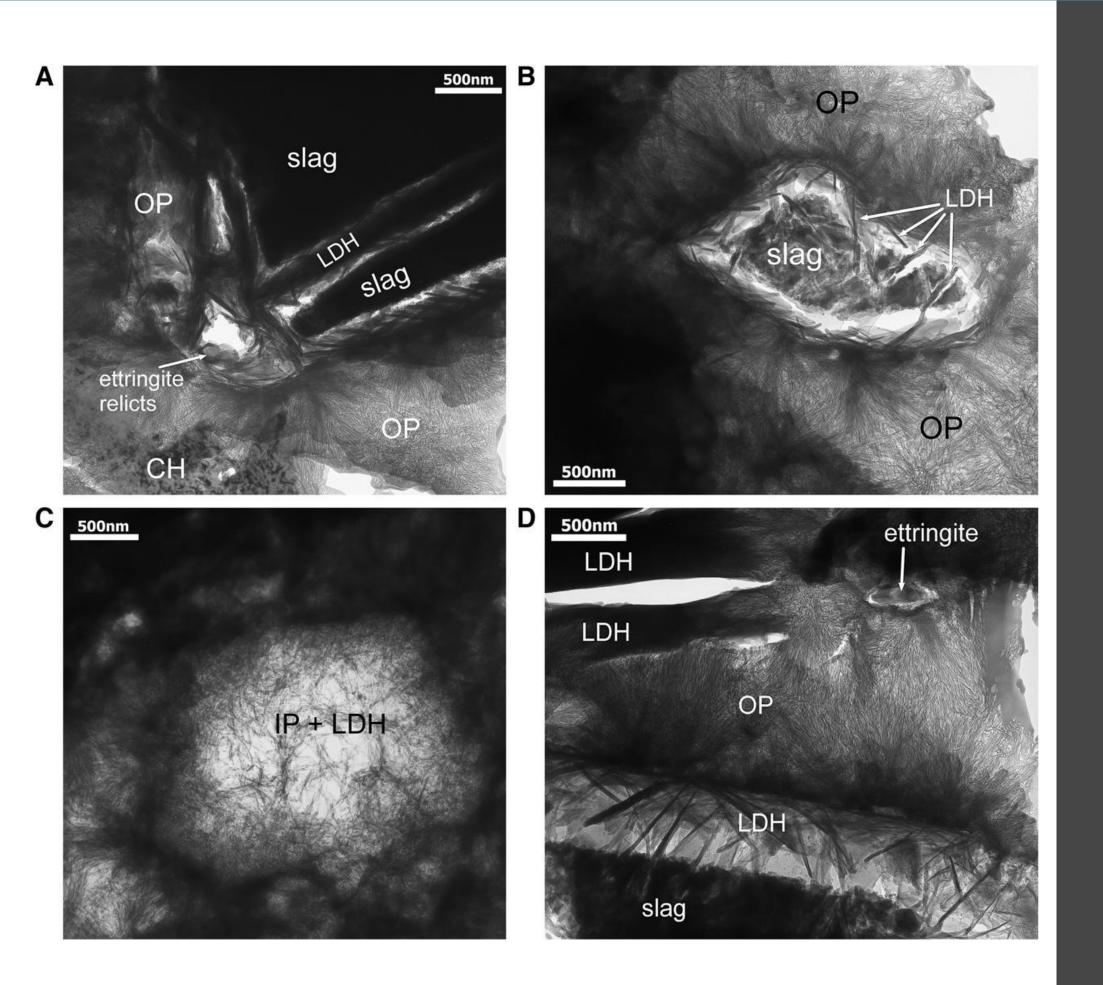
$$3Ca(OH)_{2} + Al_{2}O_{3} + 3H_{2}O \rightarrow 3CaO \cdot Al_{2}O_{3} \cdot 6$$

CH C - A - H


lydraulic effect
Increasing Calcium
Content
Medium CaO
High CaO
Slag
Cement
ţ


Hydration Products of GGBS with OPC




Α

С

Oversea Applications of GGBS – Concrete

- Discovered in Germany, 1862 and first commercially produced in 1865.
- GGBS was used in Europe and North America for over 100 years.
- Currently, GGBS has been widely used, particularly in China, Japan, Europe and USA.

Experience of Using GGBS in Concrete

GGBS Usage
• GGBS accounts for about 20% of total ce
• GGBS accounts for 60% of total cement of
• Concrete in World Trade Centre construc GGBS replacement
• Georgia Aquarium used 20% to 70% GG
• Metro Airport Terminal Expansion used replacement
 GGBS widely used in major projects like Beijing-Shanghai Express Rail, and Han
• Launch national standard in 2008
 Tsing Ma Bridge construction with GGB between 59% and 65% Stonecutter Island Bridge construction v between 60% and 70%

ement consumed consumption action has about **40%**

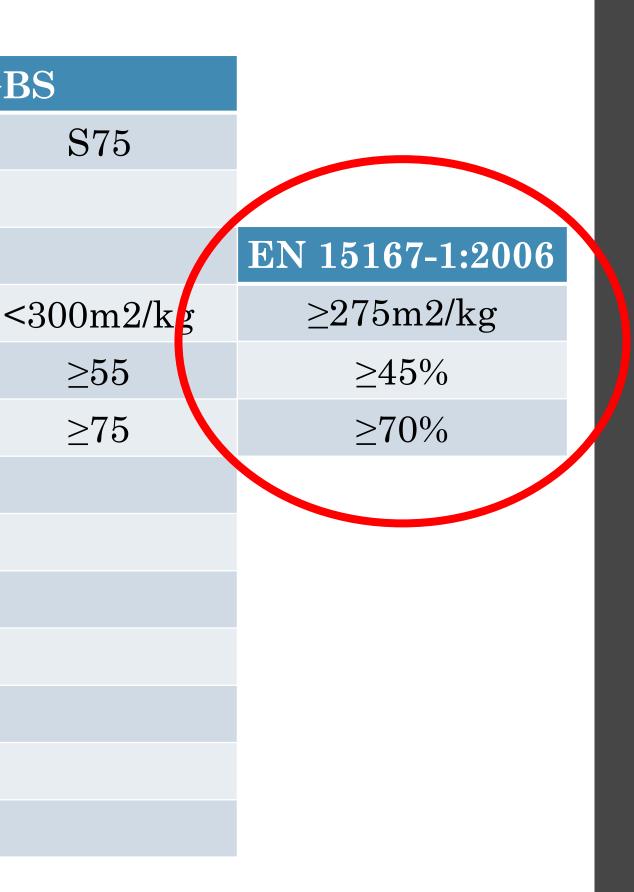
GBS replacement d concrete with **30%** GGBS

e Three Gorges Dam, ngzhou Bay Bridge

BS replacement levels

with GGBS replacement

Specification Standard in Hong Kong


BS EN 15167-1:2006

Prop	perty	Requirements for GGBS			
Physical Properties					
Moisture Content		<1.0%			
Density		_			
Fineness		$\geq 275 m2/kg$			
Initial Setting Time		$S1 \le 2 \ge S2$			
Activity Index	7-day age	$\geq \!\! 45\%$			
Activity Index	28-day age	$\geq 70\%$			
	Chemical	Properties			
Magnesium Oxide (MgO)	${\leq}18\%$			
Sulfide (S2-)		$\leq 2.0\%$			
Sulfate (SO3)		$\leq 2.5\%$			
Loss on ignition, corrected for oxidation of sulfide		$\leq\!\!3.0\%$			
Chloride (Cl-)		$\leq 0.10\%$			

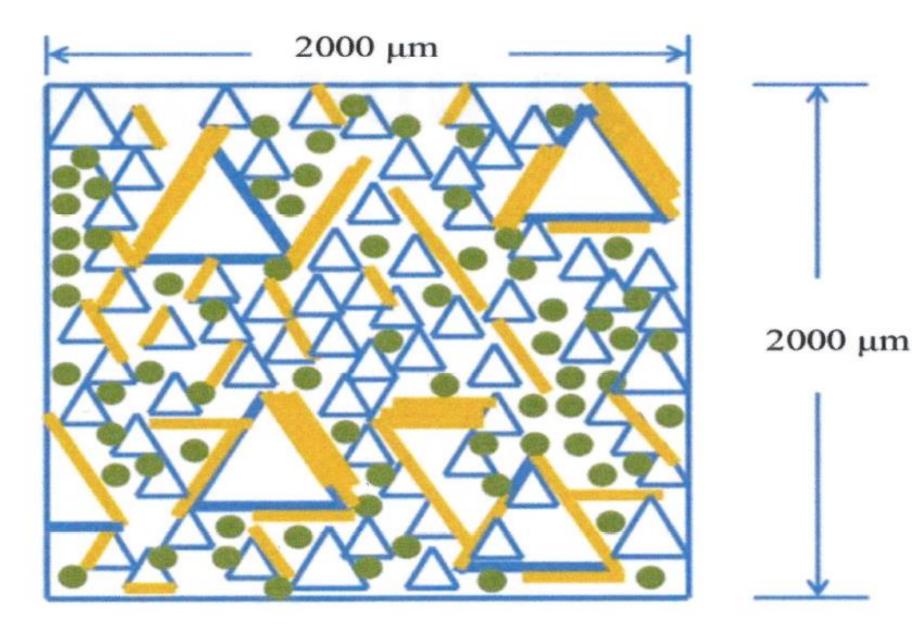
Specification Standard in GBT

GB/T 18046-2017

Droom		Requirements for GG					
Prop	Property		$\mathbf{S95}$				
	Ph	ysical Properties					
Den	sity		≥2.8g/cm3				
Fineness – Blaine		<500m2/kg	<400m2/kg	<			
Active Index	7days	≥ 95	≥ 70				
	28days	≥ 105	≥ 95				
Fluidit	y Ratio	$\geq \! 95$					
Water	Ratio	≤ 1.0					
	Che	emical Properties					
Sulphur	Trioxide	$\leq \!$					
Chlori	de Ion	$\leq 0.06\%$					
Loss on	Ignition	$\leq \! 1.0\%$					
Insoluble	Content	$\leq 3.0\%$					

2. APPLICATION OF GGBS IN CONCRETE – PROS & CONS AND SOLUTIONS

Pros & Cons of GGBS Concrete



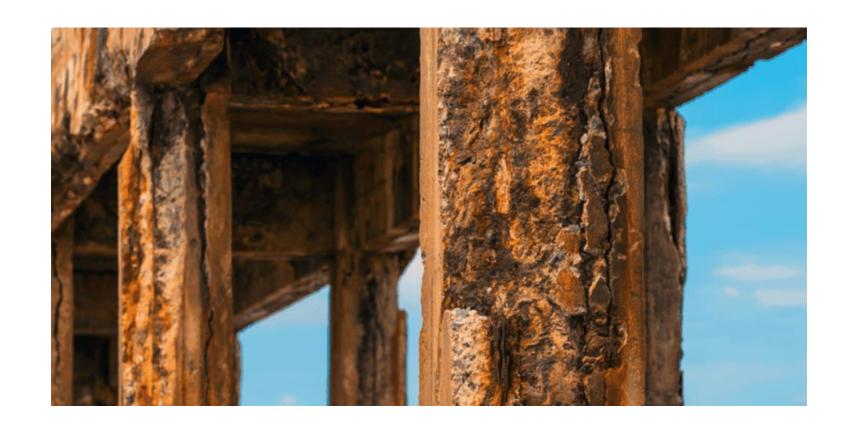
- Reducing water permeability
- Increasing corrosion resistance
- Lower peak temperature
- Better AAR Resistance

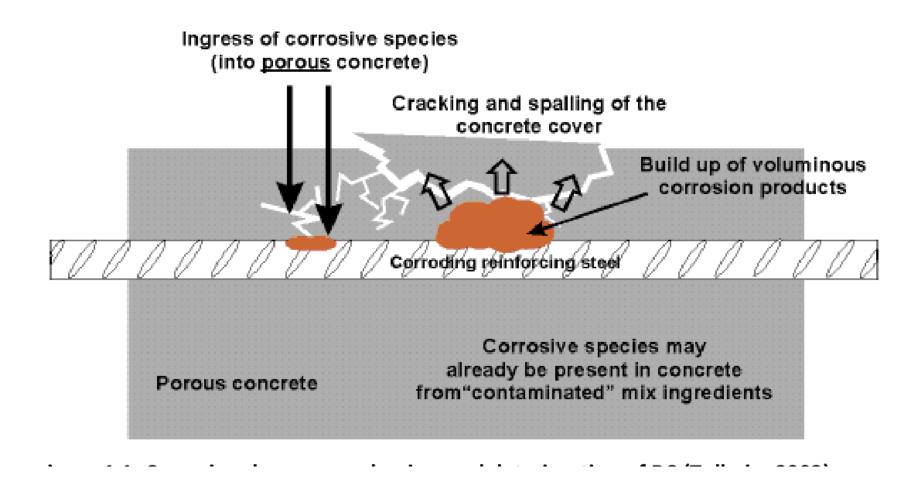
Disadvantages in performance Prolonged setting time

- Prolonged setting time
- Drying Shrinkage
- Lower early strength at initial hardening stage

Pros & Cons of GGBS Concrete

- chemical assaults
- and acid.


The permeability of concrete is an important characteristic of durable concrete, and concrete with a reduced water penetration depth shows significant resistance to


Less voids tend to cause a decrease in the permeability of concrete.

Concrete with a lower permeability is more resistant to chemical attack, including chloride, sulphate, AAR

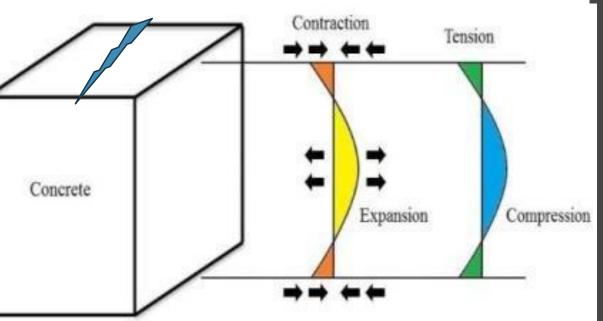
Resistance of Chemical Attack

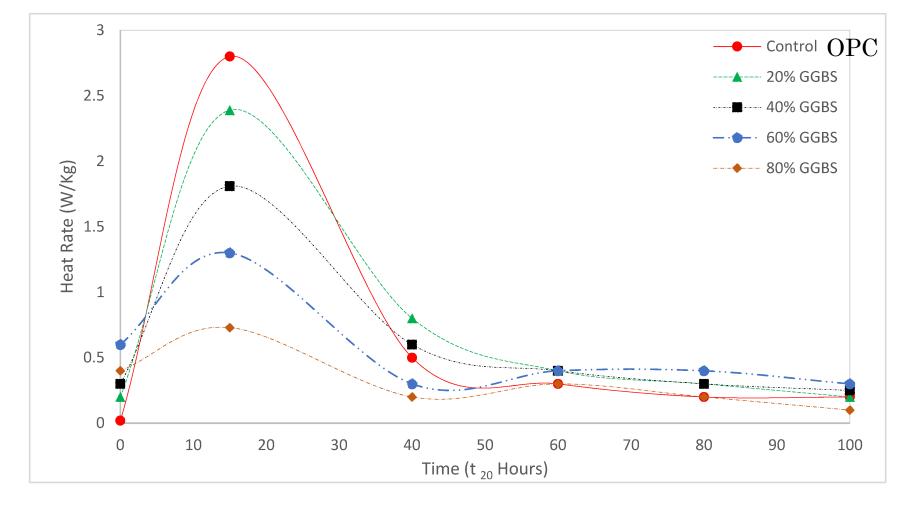
- Chloride attack is a major threat to concrete durability, causing around 40% of concrete building failures.
- The reaction of GGBS with calcium hydroxide and alkalis during hydration fills the pores with calcium silicate hydrates, improving durability against chloride penetration.



<u>GGBS Concrete Plant Trial with RCPT Test on 14 July 2022</u>									
Compressive Strength (MPa)									
Miz	<u>K</u>	<u>Design</u>	<u>1 Days</u>	<u>2 Days</u>	<u>4 Days</u>	<u>7 Days</u>	<u>14 Days</u>	<u>28</u>	<u>Days</u>
Code	Mix	Slump	Cube	Cube	Cube	Cube	Cube	Cube	RCPT Test (Coulombs)
C45 60% GGBS+ CSF	45/20D (0.36wc)	600 Flow	14.6	27.5	40	54.5	67.3	79	89
C60 65% GGBS	60/20D (0.35wc)	200	15	29	42.5	57.5	73	80	617
$\begin{array}{c} {\rm C45}\\ {\rm 65\%}\\ {\rm GGBS} \end{array}$	45/20D Tremie (0.39wc)	200	_	15	28	45.5	64.35	78.5	890

- RCPT test result for OPC concrete(C45) at 28 days is about 2500 Coulombs
- Adding GGBS can lower the result to less than 900 Coulombs


Primary causes of thermal cracking in concrete due to **temperature differentials**. Variations ulletin temperature across the concrete structure can result in thermal gradients. When different parts of the concrete expand or contract at different rates due to temperature changes, internal stresses can build up, leading to cracking.



Letter	Type of Cracking	Subdivision	Most Common Location	Primary Cause (excluding restraint)	Secondary Causes/Factors	Time of Appearance
А		Over reinforcement	Deep sections			
В	Plastic settlement	Arching	Top of columns	Excess bleeding	Rapid early drying conditions	Ten minutes to three hours
С		Change of depth	Trough and waffle slab		conditions	
D		Diagonal	Roads and slabs			
Е	Plastic shrinkage	Random	Reinforced concrete slabs	Rapid early drying	Low rate of bleeding	Thirty minutes to six hours
F		Over reinforcement	Reinforced concrete slabs	Ditto plus steel near surface		
G		External restraint	Thick walls	Excess heat generation		One day or two or three weeks
н	Early thermal contraction	Internal restraint	Thick slabs	Excess temperature gradients	e Rapid cooling	
1	Long-term drying shrinkage		Thin slabs (and walls)	Inefficient joints	Excessive shrinkage inefficient curing	Several weeks or months
J	Crazing	Against formwork	"Fair faced" concrete	Impermeable formwork	Rich mixes	One to seven days sometimes much
к		Floated concrete	Slabs	Over troweling	Poor curing	later
L	Corrosion of reinforcement	Natural	Columns and beams	Lack of cover	Poor quality	More than two years
М	Consistent of reinforcement	Calcium chloride	Precast concrete	Excess calcium chloride	concrete	
1	Alkali-aggregate reaction		Damp locations	Reactive aggregate plus high-alkali cement		More than five year

Surface Age

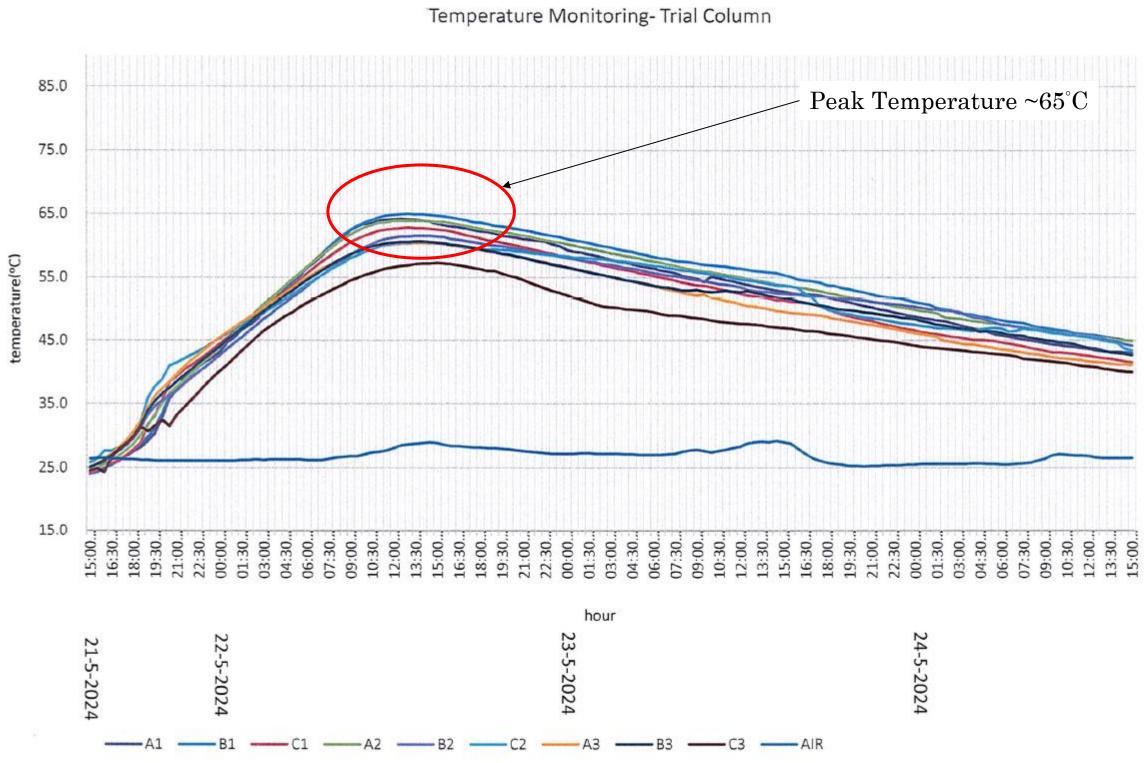
Example of thermal cracking

•

Ahmad, Jawad, et al. "A comprehensive review on the ground granulated blast furnace slag (GGBS) in concrete production." Sustainability 14.14 (2022): 8783.

The pozzolanic reaction continues gradually and is associated with the hydration of cement, which ultimately causes a decline in the heat, especially in the early days of hydration. Resulting lower peak temperature in GGBS concrete.

Reactions of Principal Clinker Phases

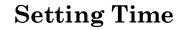

 $C_3S + H_2O \rightarrow C-S-H^* + Ca(OH)_2$ $C_2S + H_2O \rightarrow C-S-H^* + Ca(OH)_2$ $2C_3A + 18H_2O \rightarrow C_2AH_8 + C_4AH_{10}$ $2C_3A + 32H_2O + 3(Ca^{2+}_{(a,g)} + SO_4^{2-}_{(a,g)}) \rightarrow C_6AS_3H_{32}$ $C_6AS_3H_{32} + 2C_3A \rightarrow 3C_4ASH_{12}$

Cameron Road - Temperature Rise Evaluation Project:

Trial Column Location:

Mix: D80/20 50%GGBS+CSF TC 30°C Concrete

Test Date: 21-24/5/2024





	D80/20 50%GGBS+CSF				
Cement		24	14		
GGBS		27	77		
CSF		3	3		
20 mm		67	70		
10 mm		31	15		
S/F	690				
Water	155				
w/c	0.28				
	Slump Retention				
initial	22	20			
1 hr	210				
Compressive Strength (MPa) (150m					
7 Days	77.1 80.9				
28 Days	86.9	87.5	8		

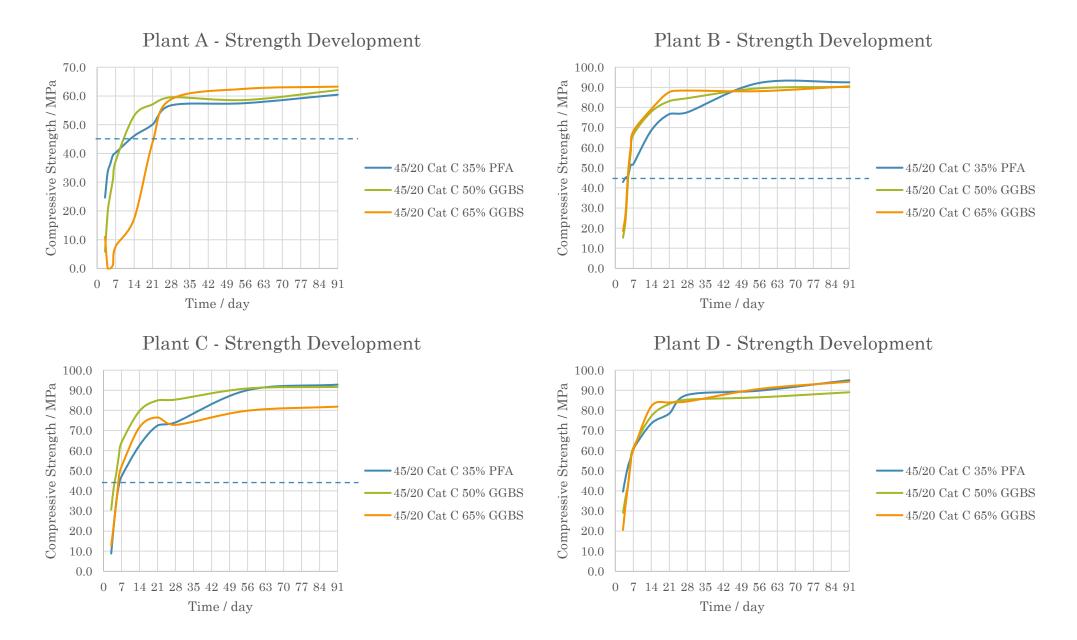
22	20
20	05
m)	
8.8	74.5
8.9	86.6

GGBS & PFA tremie concrete research by MTR (2024)

 The concrete mixes showed stiffening times exceeding 10 hours, enabling ample time for delivery and placement in tremie construction. GGBS mixes, except for plant C, displayed longer setting times than PFA mixes, showcasing GGBS's ability to extend setting times for tremie construction.

• These results emphasize the adaptability of GGBS mixes, underscoring the importance of adjusting admixture content to meet specific construction requirements.

Bored Pile								
	D45 25%PFA	D45 60%GGBS	D60 25% PFA	D60 60%GGBS				
Cement	402	184	405	200				
PFA	134	0	135	0				
GGBS	0	276	0	300				
Water	205	200	180	200				
w/c	0.38	0.43	0.33	0.40				
		Slump Retention						
initial	220	220	230	230				
1 hr	220	220	230	230				
2 hrs	210	210	220	230				
10 hrs	120	150	130	160				
	St	iffening Time (20°C)						
Initial set (hr)	24	26	24	25				
Final set (hr)	28	30	28	30				
	Compressive Strength (MPa)							
7 Days	45	48	59	54				
28 Days	60	62	78	81				

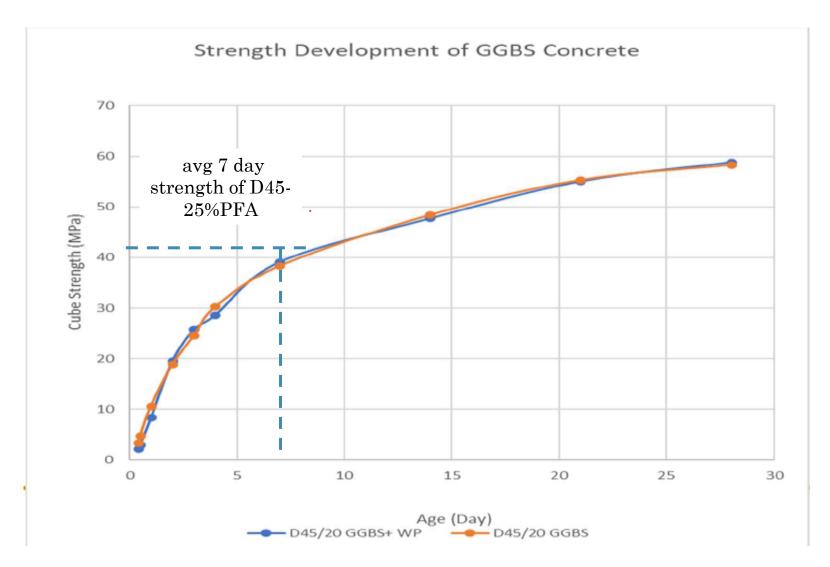

Pile Cap						
	D40 35%PFA	D40 65%GGBS	D45 35%PFA	D45 65%GGBS		
Cement	325	140	338	154		
PFA	175	0	182	0		
GGBS	0	260	0	286		
Water	207	200	197	200		
w/c	0.41	0.41 0.50 0.38				
		Slump Retention				
initial	180	180	180	180		
1 hr	160	170	160	160		
	St	iffening Time (20°C)				
Initial set (hr)	9	10	8	10		
Final set (hr)	11	12	10	12		
Compressive Strength (MPa)						
7 Days	36	34	40	37		
28 Days	53	55	60	62		

Normal Concrete						
	D45 OPC	D45 45%GGBS	D45 25% PFA	D60 OPC	D60 45%GGBS	D60 25% PFA
Cement	440	242	330	500	264	375
PFA	0	0	110	0	0	125
GGBS	0	198	0	0	216	0
Water	198	200	175	170	170	165
w/c	0.45	0.45	0.40	0.34	0.35	0.33
		SI	lump Retention			
initial	180	180	180	220	220	220
1 hr	150	160	160	200	210	210
		Stiff	ening Time (20°C	C)		
Initial set (hr)	6	8	7	6	7	6
Final set (hr)	8	10	9	7	9	8
Compressive Strength (MPa)						
7 Days	46	49	43	64	53	60
28 Days	61	67	59	81	85	77

Lower Early Strength at Initial

GGBS & PFA tremie concrete research by MTR

Strength Development



• An observable trend indicated that the initial strength of PFA typically better than mixes of GGBS that mixes, predominantly attributed to the lower dosage of 35% PFA. Strength evolution persisted up 28 days, with marginal to enhancements observed up to 91 days.

• Noteworthy the difference in strength between the 35% PFA, 50% GGBS, and 65% GGBS mixes was insignificant within each supplier.

Lower Early Strength at Initial

Mix Description	Slump	Cement	GGBS	20mm	10mm	Fine	Water	Retarder	Superplastizer	Concreteproof	A/C	W/C
D45 45%GGBS	150	242	198	610	270	800	200	2.00-4.50	2.50 - 4.50		3.82	0.45
D45 45%GGBS WP	150	242	198	610	270	800	200	2.00-4.50	2.50 - 4.50	1.54	3.82	0.45

• 17/4/2023 King Lam Street

Mix Design – D60/20 45%GGBS

22.7.

Temperature

Feb 19th, 2024, 16:36

Science Park 12W-A M/F beam / Signal 1

76.4_{MPa}

Compressive Strengtl

Feb 19th, 2024, 16:36

Report generated on Mar 12th, 2024 by Lai Chi Sing

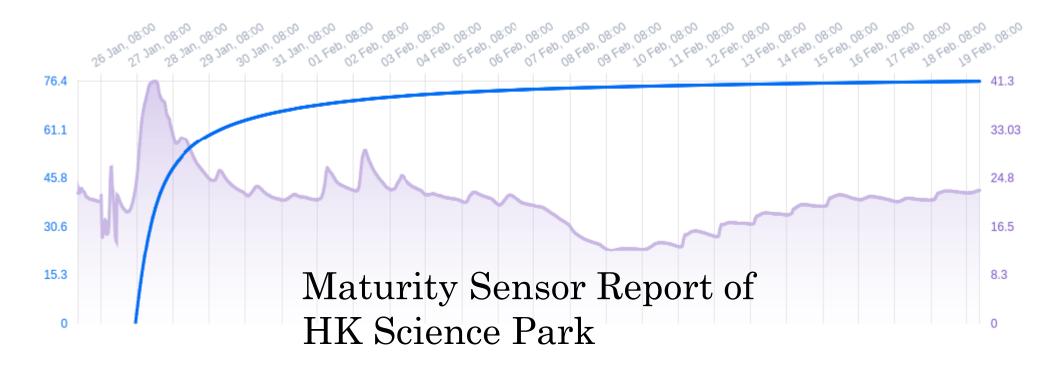
12.5

Lowest Temperature

Feb 9th, 2024, 10:36

Concre

30MPa


40MPa

50MPa

60MPa

Internal Cube Test Result Conducted in QH									
1days	20.9/20.1								
2days	41.2/41.8								
4days	55.1/54.4								
7days	67.3/66.9								
14days	75.7/73.9								
21days	80.6/82.8								
28days	86.7/85.0								

Temperature & Strength over Time

41.3°C

Highest Temperature

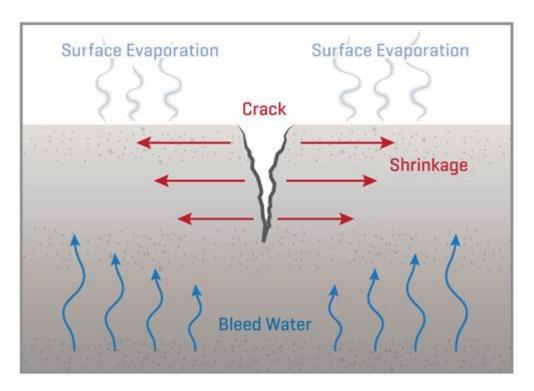
Jan 27th, 2024, 19:37

3 Days to achieved designed strength


a Jan 27th, 2024, 22:37 a Jan 28th, 2024, 09:17	ete Poured	Jan 26th, 2024, 19:45
a Jan 28th, 2024, 09:17	a	Jan 27th, 2024 16:37
	a	Jan 27th, 2024, 22:37
Jan 29th, 2024, 10:17	a	Jan 28th, 2024, 09:17
	a	Jan 29th, 2024, 10:17

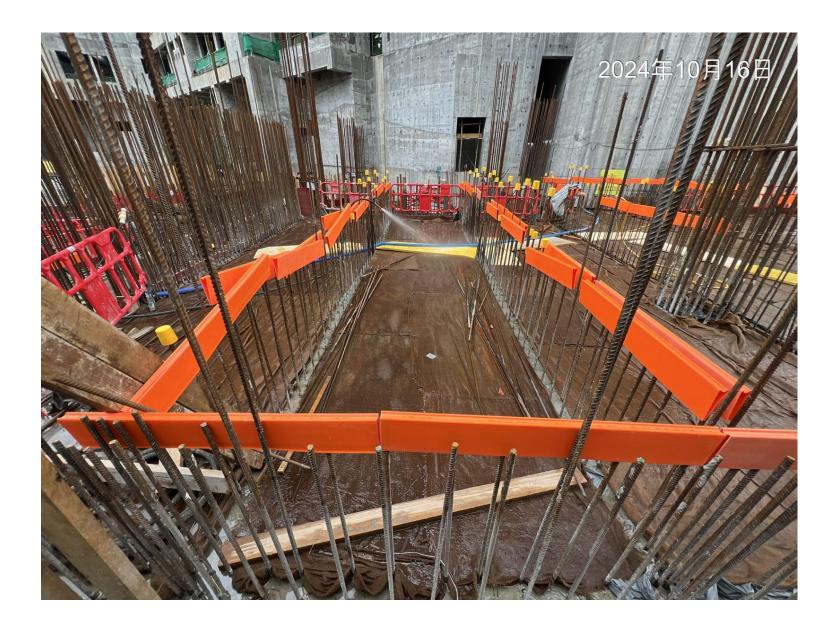
Last Recorded Strength

Feb 19th, 2024, 16:36


Plastic Shrinkage

People claim early strength for concrete with GGBS is lower than that of OPC \bullet concrete, plastic shrinkage crack is prone to happen

CIVIL ENGINEERING DAILY ©

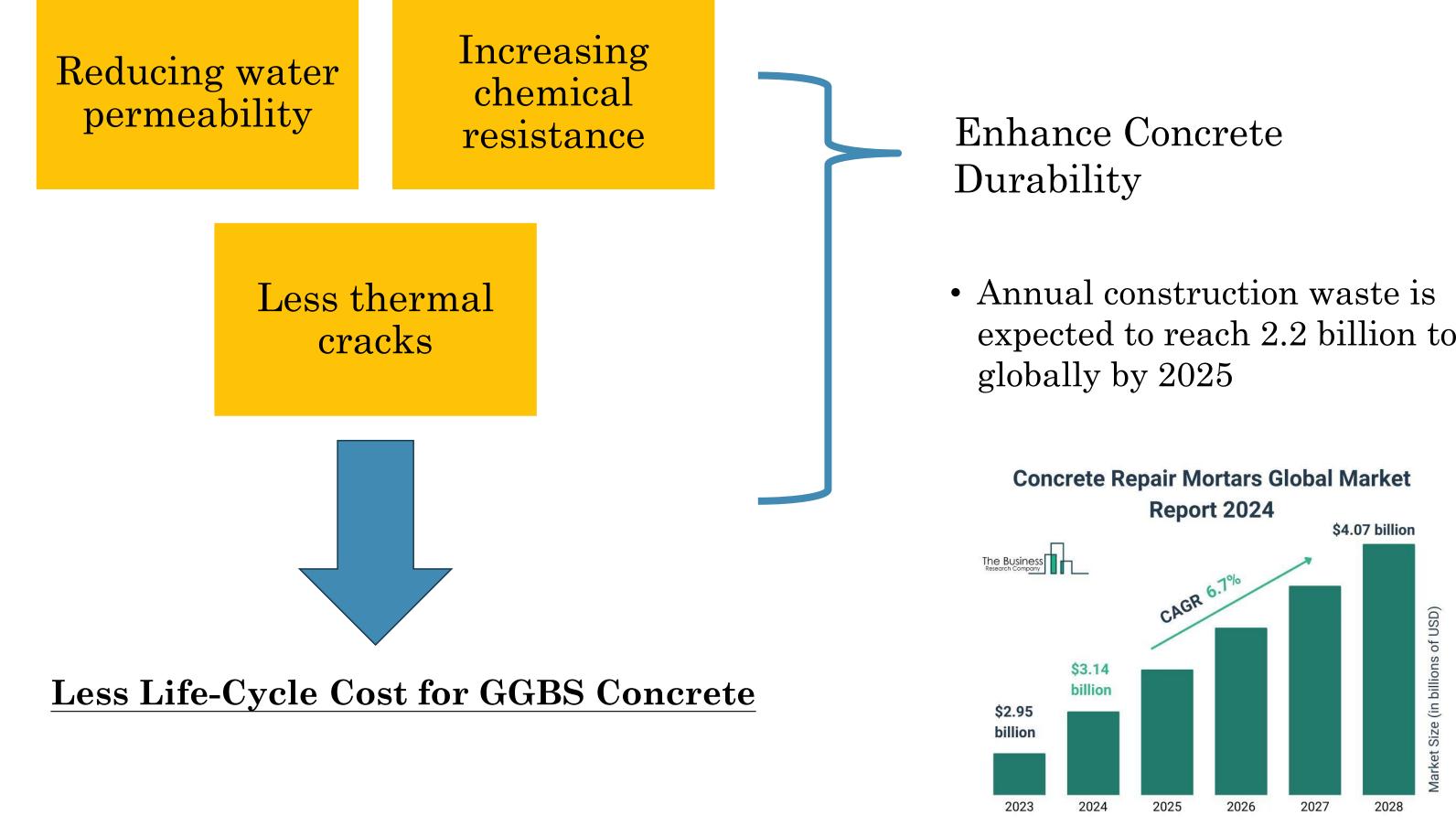

Plastic shrinkage is caused by the loss of water by evaporation from the surface of newly laid concrete or by suction of dry concrete underneath. At the surface, plastic shrinkage occurs when the rate of evaporation exceeds the rate of bleeding

Plastic Shrinkage

GGBS concrete under low temperature curing													
		Compressive Strength											
Concrete Grade	7-10°C				13-15°C				27°C				
	24 hrs	36 hrs	48 hrs	28 days	$24~\mathrm{hrs}$	36 hrs	48 hrs	28 days	$24~\mathrm{hrs}$	36 hrs	48 hrs	28 days	
C45 Cementitious content:430 (OPC)	5	17.7	24.2	62.6	8.3	19.5	24.9	61	31.3	38.1	45.9	58.2	
C45 Cementitious content:430 (OPC+25%PFA)	2.5	9.7	13.8	58.3	4.1	12.9	16.6	56.3	19	25.2	30.7	61.7	
C45 Cementitious content:430 (OPC+45%GGBS)	4.7	8.5	13.4	60.6	7.4	10.1	14.2	61.6	18.6	23.4	29.5	61.5	

Plastic Shrinkage

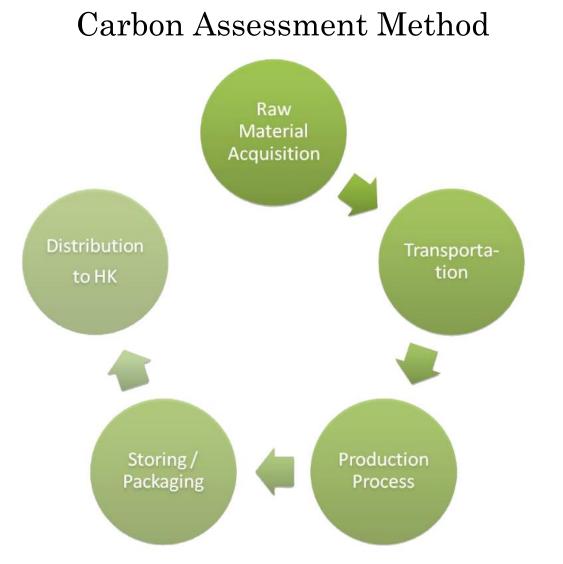
- Local curing example Pile Cap (16/10/2024)
- Proper curing by controlling **moisture** and **temperature** of in-situ concrete
- Adequate curing should be conducted for every concrete structure to avoid plastic shrinkage


3. SUSTAINABLE CONSTRUCTION SOLUTIONS – • ESG BENEFITS OF GGBS

ESG Benefits of GGBS

Recycling Materials Replacement • Reducing Carbon Emission Factor

Sustainability



expected to reach 2.2 billion tons

CIC Green Product Certification Introduction

Benchmark for Ready-mixed Concrete under the CIC Green Product Certification

ORIGINAL CIC Requirement:	C	30	C	35	C40	0	C45		C50	,0	C60	٥	C80	0
	2'	.96	32	23	350	0	373		39	6	443	3	490	0
Platinum	<	252	<	275	<	298	<	318	<	337		337		417
Gold	252	280	275	306	298	332	318	354	337	375	337	420	417	465
Silver	281	310	307	339	333	367	355	391	376	415	421	464	466	514
Bronze	311	340	340	372	368	403	392	429	416	455	465	509	515	563
Green	>	340	>	372	>	403	>	429	>	455		509		564

The quantification and reporting of the carbon footprint of ulletproducts (CFP) under this Certification is thus based on a "cradle-to-site" approach, covering all GHG emissions and removals of the product arising from raw material acquisition to the border of Hong Kong.

Carbon footprint of Cementitious Materials

Cementitious	Base Value in	Scop On-site e	e 1 – missions		ope 2 – generation	Total
Materials	$\frac{HK}{(kg CO_2/t)}$	Calcination of raw material	Fossil Fuel combustion	Clinker production	Grinding / Classification	(kg CO ₂ /t)
OPC	950	468	315	30	20	763
Classified PFA*	8		-		8	8
GGBS*	83		36		20	56

* Exclude the carbon emission in the primary process

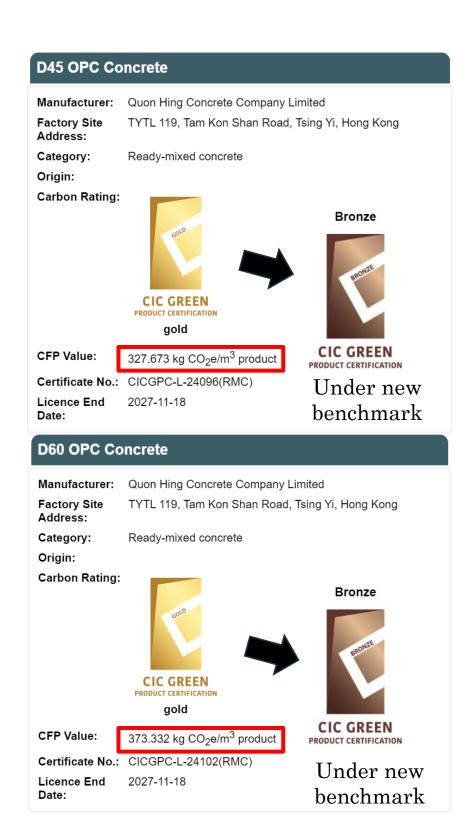
在品碳反 Carbon Footprint Int			關鍵字	查詢	網站	尊覽 ●中文
首頁	碳足跡資料庫	*	碳標籤產品查詢	統計資訊	۰ ۲	下載
關鍵字: 查詢	回上一頁 資料庫使用說明	目前碳係數	累計數量: 1111項			
	碳係數名稱		生產區域名稱	數值 🥹	宣告單位	公告年份
ト特蘭水泥 (Ⅲ型)			臺灣	9.81E-1 kgCO2e	公斤 (kg)	2020
ト特蘭水泥(Ⅱ型)			臺灣	9.64E-1 kgCO₂e	公斤 (kg)	2019
鋁質水泥			歐洲	1.01E+1 kgCO₂e	公斤 (kg)	2018
水泥熟料			臺灣	9.48E-1 kgCO₂e	公斤 (kg)	2017
水泥(不分型號)			臺灣	9.07E-1 kgCO₂e	公斤 (kg)	2017
水泥熟料			臺灣	9.50E-1 kgCO₂e	公斤 (kg)	2014
ト特蘭水泥(乾式)			臺灣	9.40E-1 kgCO2e	公斤 (kg)	2014

Carbon emission of cement ~907kg/t

		<u></u>		
產品碳足跡 資訊網	關鍵字	查詢		
首頁 び足跡資料庫 🔹	碳標籤產品查詢	統計重	それ -	下載專
預拌混凝土(245 kgf/cm2)	臺灣	2.52E+2 kgCO2e	立方公尺(m3)	2020
預拌混凝土(280 kgf/cm2)	臺灣	3.38E+2 kgCO2e	立方公尺(m3)	2020
自充填預拌混凝土(350 kgf/cm2)	臺灣	3.75E+2 kgCO₂e	立方公尺(m3)	2020
預力梁用預拌混凝土(350 kgf/cm2)	臺灣	4.07E+2 kgCO2e	立方公尺 (m3)	2020
早強預拌混凝土(420 kgf/cm2)	臺灣	3.70E+2 kgCO2e	立方公尺(m3)	2020
早強預拌混凝土(420kgf/cm2·飛灰爐石粉替代率22%)	臺灣	4.64E+2 kgCO2e	立方公尺 (m3)	2019
早強預拌混凝土(420kgf/cm2·飛灰爐石粉替代率20%)	臺灣	4.31E+2 kgCO2e	立方公尺(m3)	2017
早強預拌混凝土(420kgf/cm2·飛灰爐石粉替代率25%)	臺港	4.43E+2 kgCO2e	立方公尺(m3)	2017
早強預拌混凝土(420kgf/cm2·飛灰爐石粉替代率45%)	臺灣	3.36E+2 kgCO2e	立方公尺(m3)	2017
混凝土及水泥砂费用水淬高爐爐碴粉(散裝)	直進	5.04E+1 kgCO2e	公噸(mt)	2016
混凝土及水泥砂漿用水淬高爐爐碴粉(太空包裝)	台灣	5.47E+1 kgCO2e	公噸(mt)	2016
飛灰爐石粉(散装)	臺灣	4.82E+1 kgCO2e	公噸(mt)	2016
飛灰爐石粉(太空包裝)	臺灣	5.25E+1 kgCO₂e	公噸(mt)	2016

Carbon emission of GGBS ~50.4kg/t

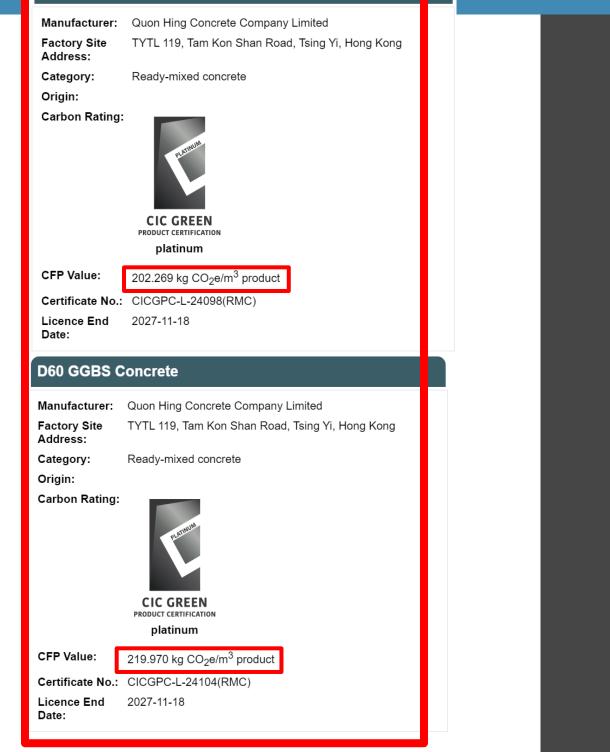
Lower Carbon Emission Factor


Carbon emission factor for concrete mix

		<u>1</u>	Normal Concrete			
	D45 OPC	D45 25% PFA	D45 45%GGBS	D60 OPC	D60 25% PFA	D60 45%GGBS
Cement	440	330	242	500	375	264
PFA	0	110	0	0	125	0
GGBS	0	0	198	0	0	216
Water	198	175	200	170	165	170
w/c	0.45	0.40	0.45	0.34	0.33	0.35
Carbon Emission Factor	367.651	281.605	226.188	415.542	317.123	244.564

		Bored Pile					Pile Cap		
	D45 25%PFA	D45 60%GGBS	D60 25% PFA	D60 60%GGBS		D40 35%PFA	D40 65%GGBS	D45 35%PFA	D45 65%GGBS
Cement	402	184	405	200	Cement	325	140	338	154
PFA	134	0	135	0	PFA	175	0	182	0
GGBS	0	276	0	300	GGBS	0	260	0	286
Water	205	200	180	200	Water	207	200	197	200
w/c	0.38	0.43	0.33	0.40	w/c	0.41	0.50	0.38	0.45
Carbon Emission Factor	337.219	192.514	339.978	207.446	Carbon Emission Factor	276.7884	156.164	287.0238	169.548

Embodied carbon reduction in concrete: PFA concrete : ~25% GGBS concrete : 50%+


Lower Carbon Emission Factor

D45 PFA Concrete Manufacturer: Quon Hing Concrete Company Limited Factory Site TYTL 119, Tam Kon Shan Road, Tsing Yi, Hong Kong Address: Category: Ready-mixed concrete Origin: Carbon Rating: Gold CIC GREEN PRODUCT CERTIFICATION platinum **CIC GREEN** CFP Value: 261.561 kg CO₂e/m³ product PRODUCT CERTIFICATION Certificate No.: CICGPC-L-24097(RMC) Under new Licence End 2027-11-18 benchmark Date: D60 PFA Concrete Manufacturer: Quon Hing Concrete Company Limited TYTL 119, Tam Kon Shan Road, Tsing Yi, Hong Kong Factory Site Address: Category: Ready-mixed concrete Origin: Carbon Rating: Gold CIC GREEN PRODUCT CERTIFICATION platinum **CIC GREEN** CFP Value: 292.142 kg CO₂e/m³ product PRODUCT CERTIFICATION **ORIGINAL CIC Requirem** Certificate No.: CICGPC-L-24103(RMC) Under new Licence End 2027-11-18 benchmark Date:

Proposed New Benchma Plat

D45 GGBS Concrete

uirement:	C	30	C	35	C4	0	C	15	C	50	C	50	C8	0
	2	96	33	23	35	0	37	'3	39	96	44	13	49	0
Platinum	<	252	<	275	<	298	<	318	<	337		337	_	417
Gold	252	280	275	306	298	332	318	354	337	375	337	420	417	465
Silver	281	310	307	339	333	367	355	391	376	415	421	464	466	514
Bronze	311	340	340	372	368	403	392	429	416	455	465	509	515	563
Green	>	340	>	372	>	403	>	429	>	455		509		564

narking	C	30	C	35	C	40	C	45	C	50	C	60	C	80
	25	56	2	79	2	90	2	93	2	96	3	23	3	09
atinum	<	218	<	238	<	247	<	250	<	252	<	246	<	263
Gold	218	242	238	264	247	275	250	278	252	280	246	306	263	293
Silver	243	268	265	293	276	304	279	307	281	310	307	338	294	324
Bronze	269	294	294	321	305	334	308	337	311	340	339	371	325	355
Green	>	294	>	321	>	334	>	337	>	340	>	371	>	356

Net-Zero emissions by 2035

Thank you...

0

Old History with New Horizon

through Innovation for the next stage

Making it possible NOW

4. INNOVATIVE CONSTRUCTION METHODS - Ultrafine GGBS

This is the most update Low Carbon Cement and Concrete STANDARDs

Low-Carbon Concrete— Code Requirements and Commentary	Efficiency Buildability Quality	to the part of the	Rigidity Strength/ Resilience Mater Technolo
CODE-323-24	Design Process		Construction
American Concrete Institute Average conventions	m to be able ting TI		

Independent Carbon Crediting Programmes – Low Carbon Cement Protocol **Additionality** Requirement - Exceed Common Practice

Ineligible SCM/ACM List

- Portland Limestone Cement (ASTMC595)
- Traditional fresh coal ash (ASTM C618)
- Silica fume (ASTM C1240)
- Traditional Slag Cement (ASTM C595 & C989) **Grade** 80 = (China S75) Blaine- GGBS 3250cm2/g **Grade 100 = (China S95)** Blaine- GGBS 4100cm2/g **Grade 120 = (China S105)** Blaine- GGBS 5700cm2/g

Examples of eligible SCMs/ACMs include:

- Beneficiated coal ash (upgraded and/or harvested coal or bottom ash)
- Raw natural pozzolans (i.e., volcanic ash)
- Limestone calcined clay cements (LC3)
- Carbon dioxide (CO2)
- Other artificial pozzolans or treated calcined materials (including rice husk ash)
- Novel ACMs (including clinkered, calcined, and non-clinkered materials)
- Hydroxide products (including portlandite (Ca(OH)2) and brucite (Mg(OH)2))
- Other novel SCM/ACM s (including biogenic limestone, etc)

development.

Eligible Products

- Calcined clays/shale and/or metakaolin
- Other waste by-products (including Bauxite residue (Red Mud) or cement kiln dust)
- Blends including one or more eligible SCMs/ACMs

Project Developers

The project developer by default is the SCM/ACM supplier or manufacturer, but a project developer may also be low-carbon cement technology suppliers, and/or entities that specialize in project

China and India High Fineness GGBS Standard

ICS 91.100.30 Q 13 本标准主要起草人:高春勇、姚燕、王玲、王军伟、李建勇、沈平邦、赵磊、孙继成、李培彦、王斌、高博、

高强高性能混凝土用矿物外加剂

中华人民共和国国家标准

Mineral admixtures for high strength and high performance concrete

表 1 矿物外加剂的技术要求

GB/T 18736—2017 代替 GB/T 18736—2002

			GGBS Fi	neness			20	17 Version
	试验项目			矿渣	粉煤灰	磨细	硅灰	偏高岭土
			I	Π		天然沸石		
氣化	;镁(质量分数)/%		14	.0	-	-	—	4.0
三氣	化硫(质量分数)/%		4	.0	3.0	-	-	1.0
烧失	量(质量分数)/%	₽	3	.0	5.0	-	6.0	4.0
氯离	;子(质量分数)/%		0.	06	0.06	0.06	0.10	0.06
二氣	化硅(质量分数)/%	W	-	-	-	-	85	50
三氣	化二铝(质量分数)/%	V	-	—	-	-	—	35
游离	氣化钙(质量分数)/%		-	-	1.0	-	—	1.0
吸锁	值/(mmol/kg)	V	-	—	-	1 000	—	_
含水	率(质量分数)/%		1	.0	1.0	—	3.0	1.0
der 101	比表面积/(m ² /kg)	W	600	400	—	—	15 000	—
细度	45 µm 方孔筛筛余(质)	■分数)/%≤	-		25.0	5.0	5.0	5.0
需水	量比/%		115	105	100	115	125	120
		3 d	80	—	-	-	90	85
活性	:指数/% ≥	7 d	100	75	—	—	95	90
		28 d	110	100	70	95	115	105

Saxena, Harshit & Srivastava, Vikas & Yadav, Ashish & Tiwari, Ashok. (2024). Ultrafine GGBS and Fly Ash as Cement Replacement for Sustainable Concrete. Journal of Environmental Nanotechnology. 13. 25-30. 10.13074/jent.2024.09.242659.

Table 4. Chemical characteristics of ultrafine GGBS

_

S. No.	Chemical component	Value (% by mass)
1	Manganese oxide (MnO)	0.45
2	Magnesium oxide (MgO)	8.91
3	Sulphide sulphur (S)	0.63
4	Sulphate (SO ₄ ²⁻)	0.22
5	Chloride content (Cl ⁻)	0.07
6	CaO	33.03
7	SiO_2	33.80
8	Glass content	93.50

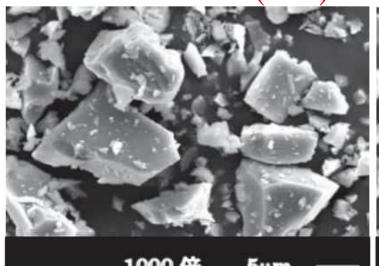
Table 5. Physical characteristics of GGBS

Characteristic	Value
Particle size (µm)	
D50	3.90
D95	14.21
Fineness (m ² /kg)	1822
Slag activity index %	
7 days	94.6
28 days	114
Specific gravity	2.82

GGBS Fineness And Replacement Ratio Effect On Concrete Compressive Strength Study

	ID	-			ng time			GGBS	inene
				tial			nal	6	
	lain /35B1			55			21 55	Blaine 1	51=4
	35B1 /35B2		31				55 58		
	35B3			ю			91	66	DC
HV	35B4		39	96		4	70	GG	
HV	50B1		43	35		5	56	Replace	emen
HV	/50B2		41	4		5	41	-	
	/50B3		4				30		
	750B4		44				60		
	65B1			30			45		Je
	/65B2 /65B3			75 45			52 25	250/	Blaine
	65B4		58				48	35%	
	8081		20				05		B
HV	/80B2		25	55		11	05		
нγ	/80B3		36	55		11	40		
ΗV	/80B4		38	35		7	35	-	
	ID			Unit we	eight(kg)				
	ID	water	OPC	GB1	GB2	GB3	GB4	50%	ne
0%	Plain	2.4	12.0	-	2	-	-	5070	Blaine
	HV35B1	2.4	7.8	4.2	-	-	-		31
2.50/	HV35B2	2.4	7.8	-	4.2	-	-		-
35%	HV35B3	2.4	7.8	-	-	4.2	_		
	HV35B4	2.4	7.8	-	-	-	4.2		
48 (11) 1 1 1 1 1 1 1 1 1 1	HV50B1	2.4	6	6					e
500/	HV50B2	2.4	6	-	6	-		65%	E.
50%	HV50B3	2.4	6	-	-	6	-		la
	HV50B4	2.4	6	-	-	-	6		B
	HV65B1	2.4	4.2	7.8		-	-		
(50)	HV65B2	2.4	4.2	-	7.8	-	-	2	
65%	HV65B3	2.4	4.2	-	-	7.8	-		•
	HV65B4	2.4	4.2	-		-	7.8	80%	ň
	HV80B1	2.4	2.4	9.6		-		00/0	Blaine
0.004	HV80B2	2.4	2.4	-	9.6	-			3
80%	HV80B3	2.4	2.4	-	-	9.6	3 4 0		, marine
	HV80B4	2.4	2.4	-	-	-	9.6		
					1997				

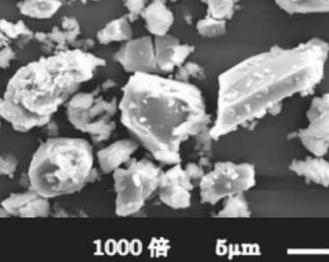
GGBS F	inene	ss a	nd Replacem	ent Ratio Or	n Concrete Com	oressive Strengtl	n At Water/Binde	r Ratio = 0.24
Blaine B	31=4,3	350	cm²/g , Blai	ne B2=5,35	0 cm²/g, Blaine	B3=6,450 cm ²	/g , Blaine B4=	$7,650 \text{ cm}^2/\text{g},$
66	DC		ID	Flow		Compressive St	rength (MPa)	
	GBS Cement		(mm)	3 day	7 day	28 day	91 day	
			Plain	202.0	82.0	91.9	107.3	131.3
	e s	∡ [HV 35 B1	415.0	87.2	104.2	136.7	152.5
35%	Blaine	- B 4	HV 35 B2	411.5	90.5	110.7	141.2	151.5
	B	<u>8</u> [HV 35 B3	405.5	88.1	113.4	136.5	153.9
			HV 35 B4	363.0	95.4	111.2	142.5	154.7
		. -	HV 50 B1	424.5	78.3	111.9	142.5	157.2
50%	Blaine	59~ [HV 50 B2	425.0	86.6	112.6	145.8	158.3
	Bla	È.	HV 50 B3	410.0	90.7	114.6	144.2	156.1
			HV 50 B4	366.0	92.7	112.0	123.7	154.5
		4 -	HV 65 B1	458.5	75.3	126.0	142.2	163.7
65%	, ji e	Ž.	HV 65 B2	442.0	80.2	119.8	128.0	155.0
	Bla	È.	HV 65 B3	436.0	78.5	117.5	128.0	142.6
		1. 10	HV 65 B4	407.0	82.8	118.4	131.9	149.0
		त -	HV 80 B1	441.5	60.7	109.4	118.1	125.7
80%	ine.	-B4	HV 80 B2	448.0	68.1	114.7	121.5	138.2
	Blaine D1 D4	È.	HV 80 B3	453.5	70.3	117.9	119.3	136.2
		. 10	HV 80 B4	412.0	78.6	97.7	113.1	121.0

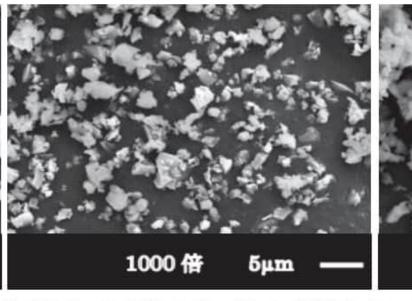


BF8000

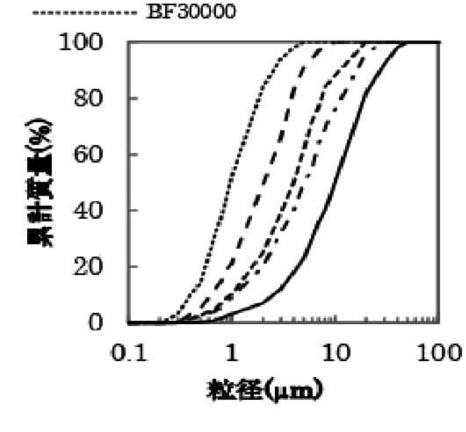
BF4000 (S95)

各種高炉スラグ微粉末の SEM 画像 BF11000



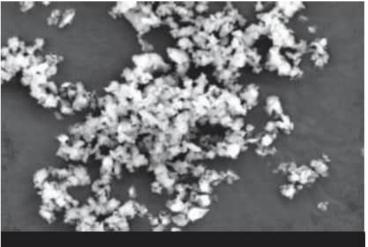

BF4000

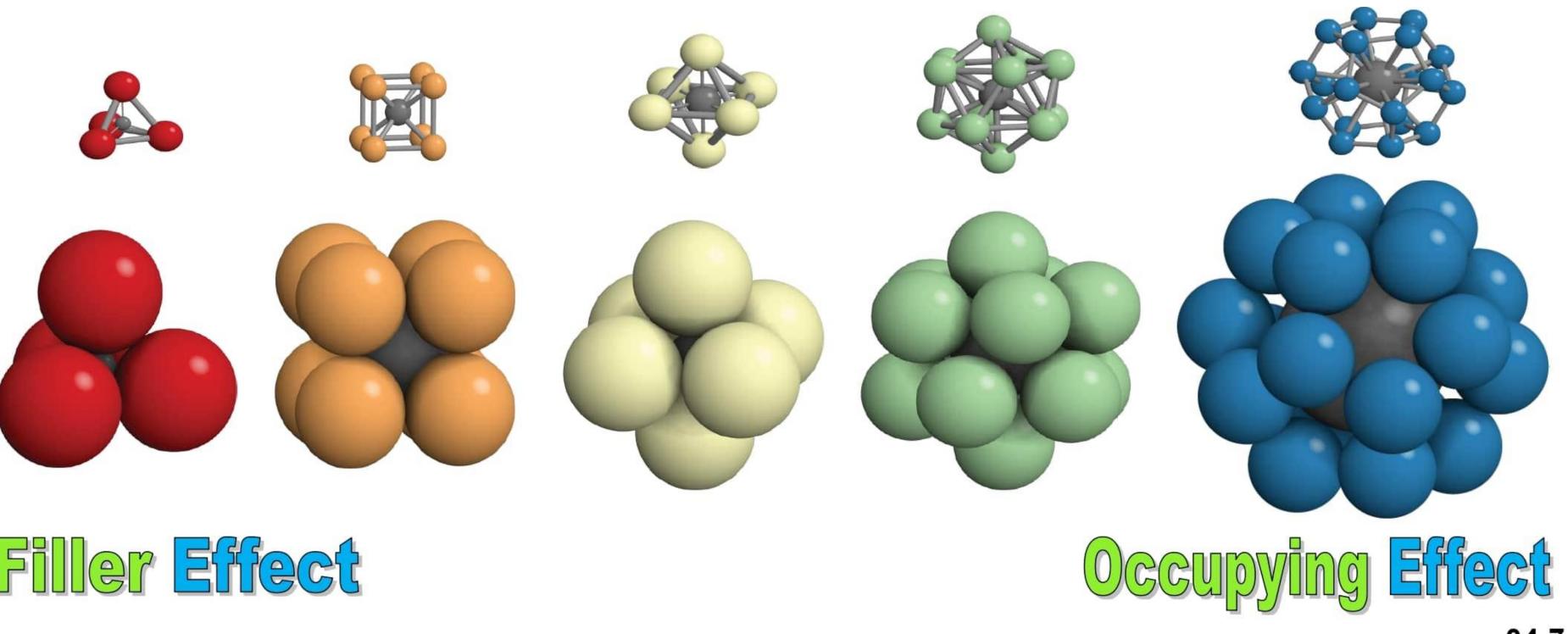
BF11000


1000倍 5µm

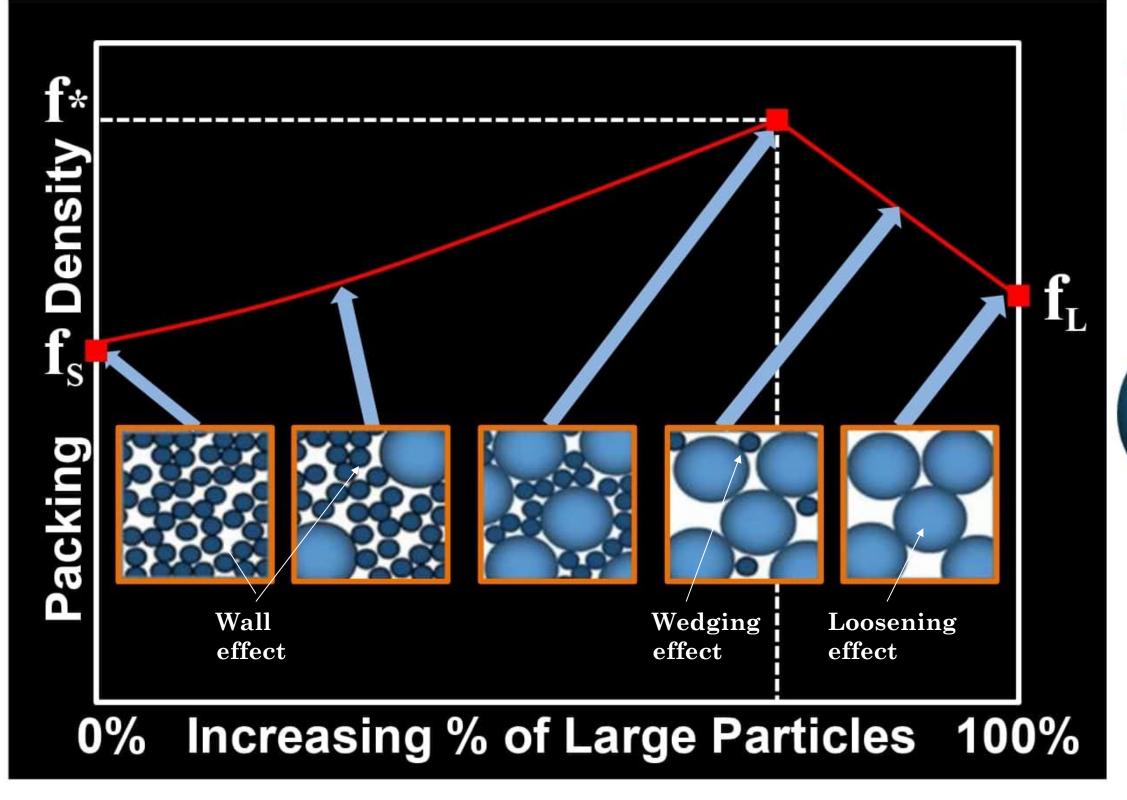
BF8000

高炉スラグ微粉末の種類および物性


BF18000			同別へつ	フツ伽切木	の裡知めよ	い物性			化学成分	
	Productio	n Using			種類	<u> </u>		化学成分	試驗値	JISA 6206 の規定値
1	Air Classi	fier	BF4000	BF8000	BF11000	BF18000	BF30000	(%)		
		-3)	0.00	0.00	9.00	0.00	0.00	ig.loss	0.55	3.0以下
	密度(g/cn	19	2.92	2.92	2.92	2.92	2.92	insol	0.64	-
	比表面積	cm^{2}/g	4830	8180	10800	18050	29620	SiO ₂	32.7	-
	平均粒径(µm) フロー値比(%)		10.7.7.7.00.7.00 - 14		-			Al ₂ O ₃	13.4	-
			9.6	5.2	4.0	2.0	1.0	Fe ₂ O ₃	0.5	-
			100 99		98	93	86	CaO	41.6	-
	Number of Contract				and the second se	and the second	and the second se	Na ₂ O	0.22	•
	活性度	7日	67	98	100	154	164	K ₂ O	0.28	-
	指数	28日	99	112	128	138	138	MgO	6.9	10以下
100			2		<u> </u>			SO ₃	0.34	4.0以下
100	(%)	91日	105	120	122	118	111	CI.	0.0003	0.02 以下


1000倍 5µm **BF30000**

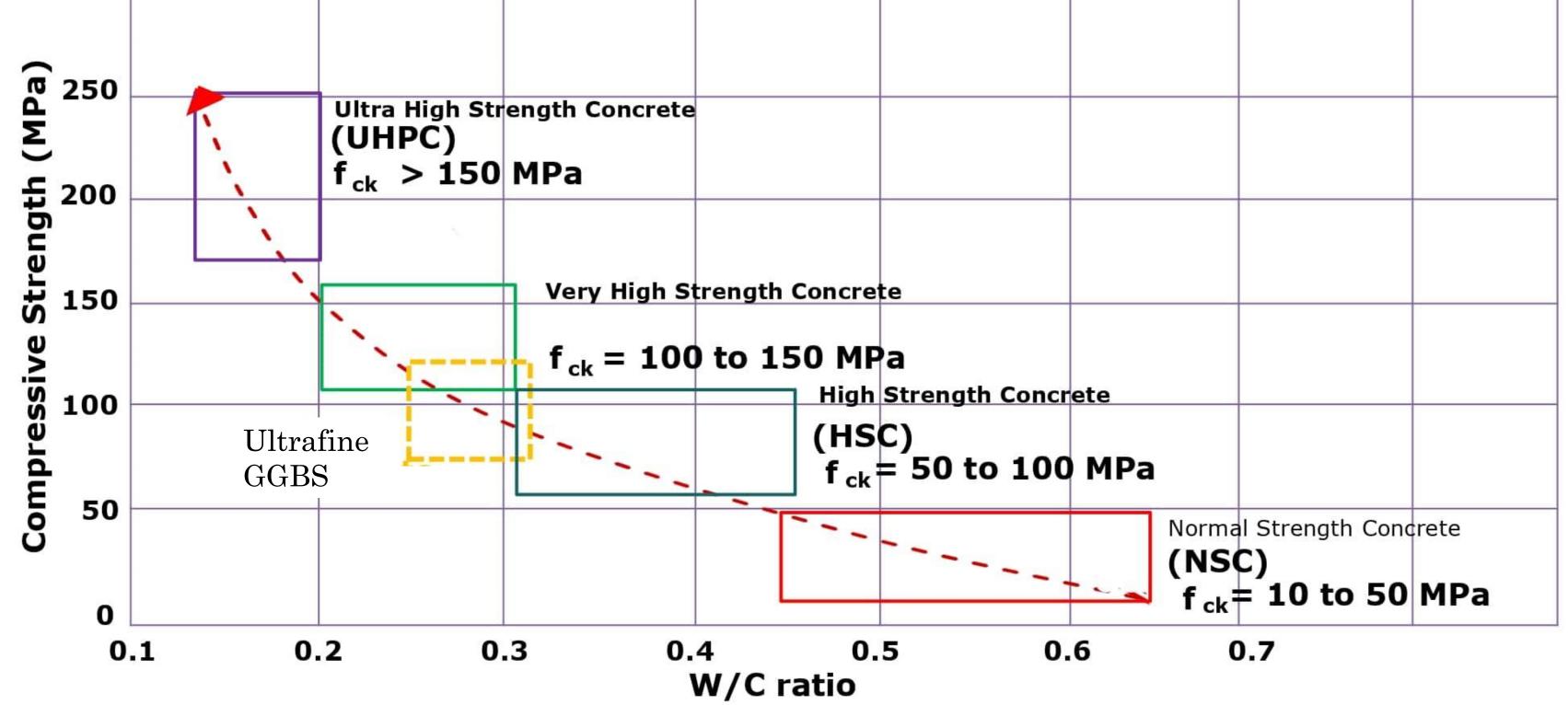
1000倍 5µm


高炉スラグ徴粉末の 化学成公

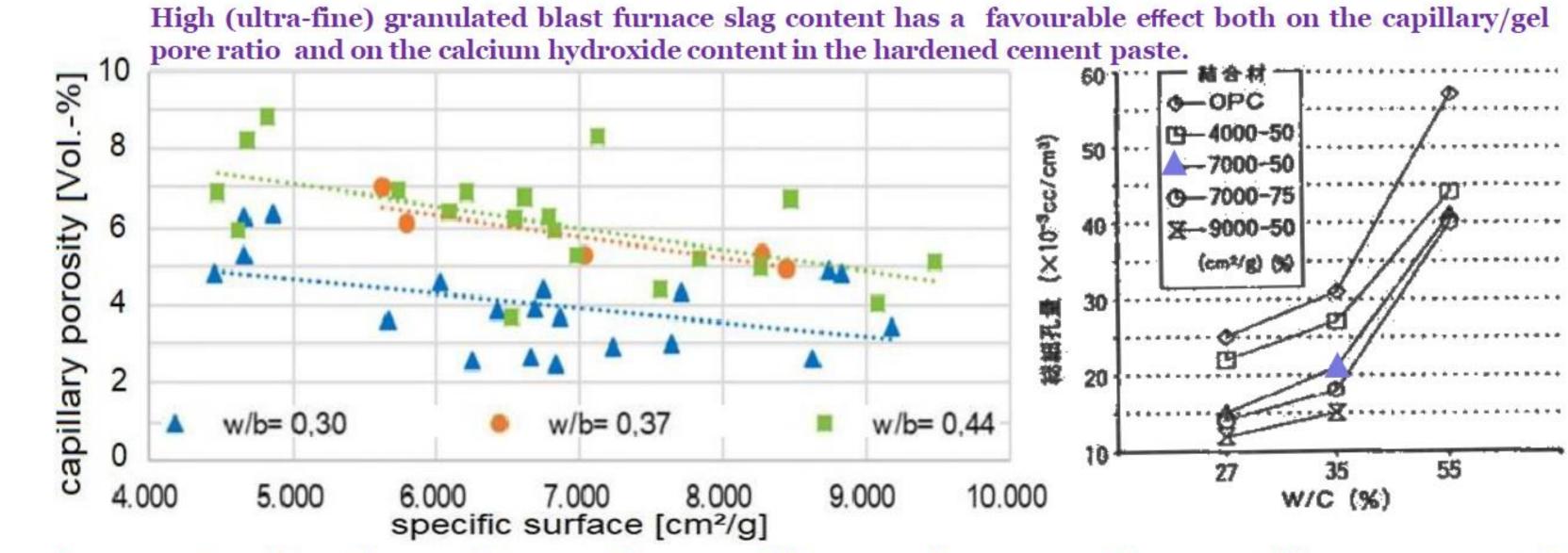
Expanding Cement Paste Property Space Concept of Packing Density

Filler Effect

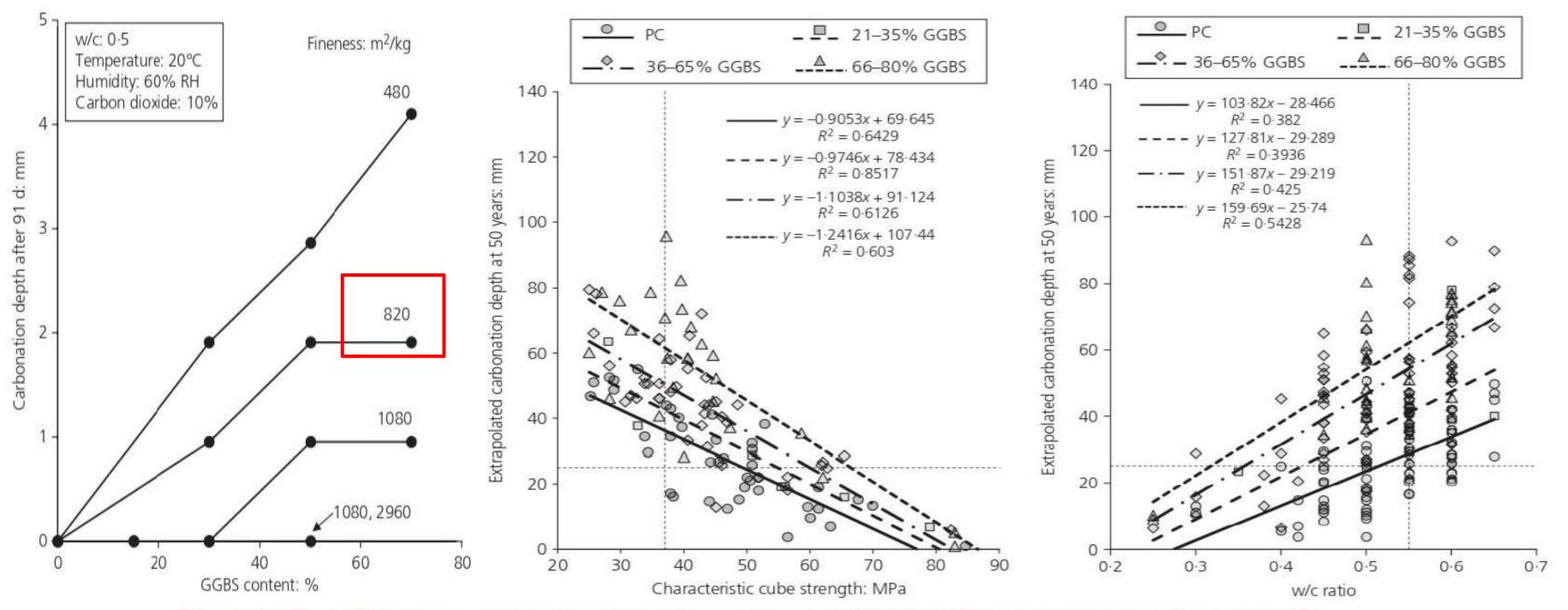
Tailoring Bimodal Local F



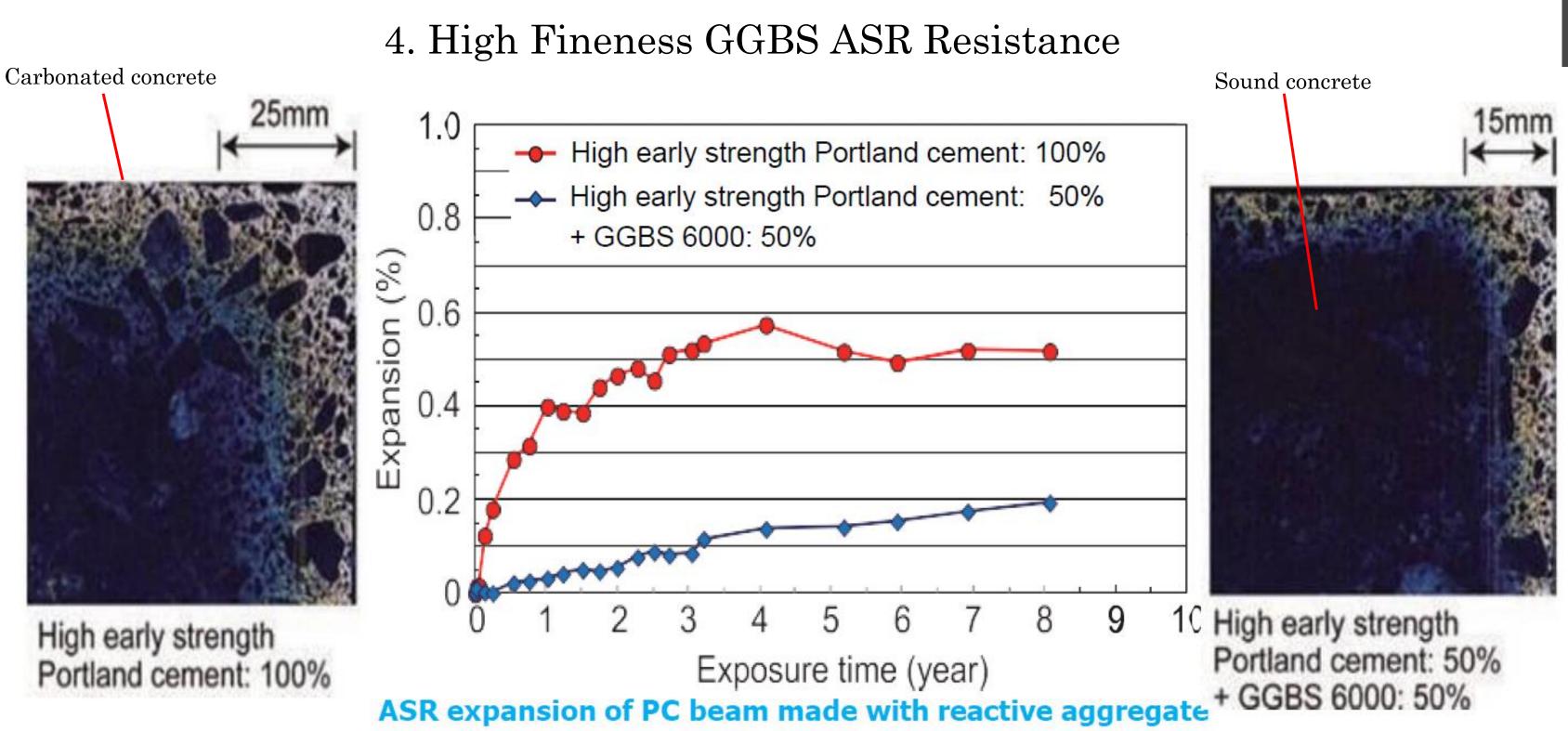
Cement 20µm


^{5µm} Superfine GGBS

CONCRETE PERFORMANCE push continuously upwards



2. High Fineness GGBS Capillary Pore Size

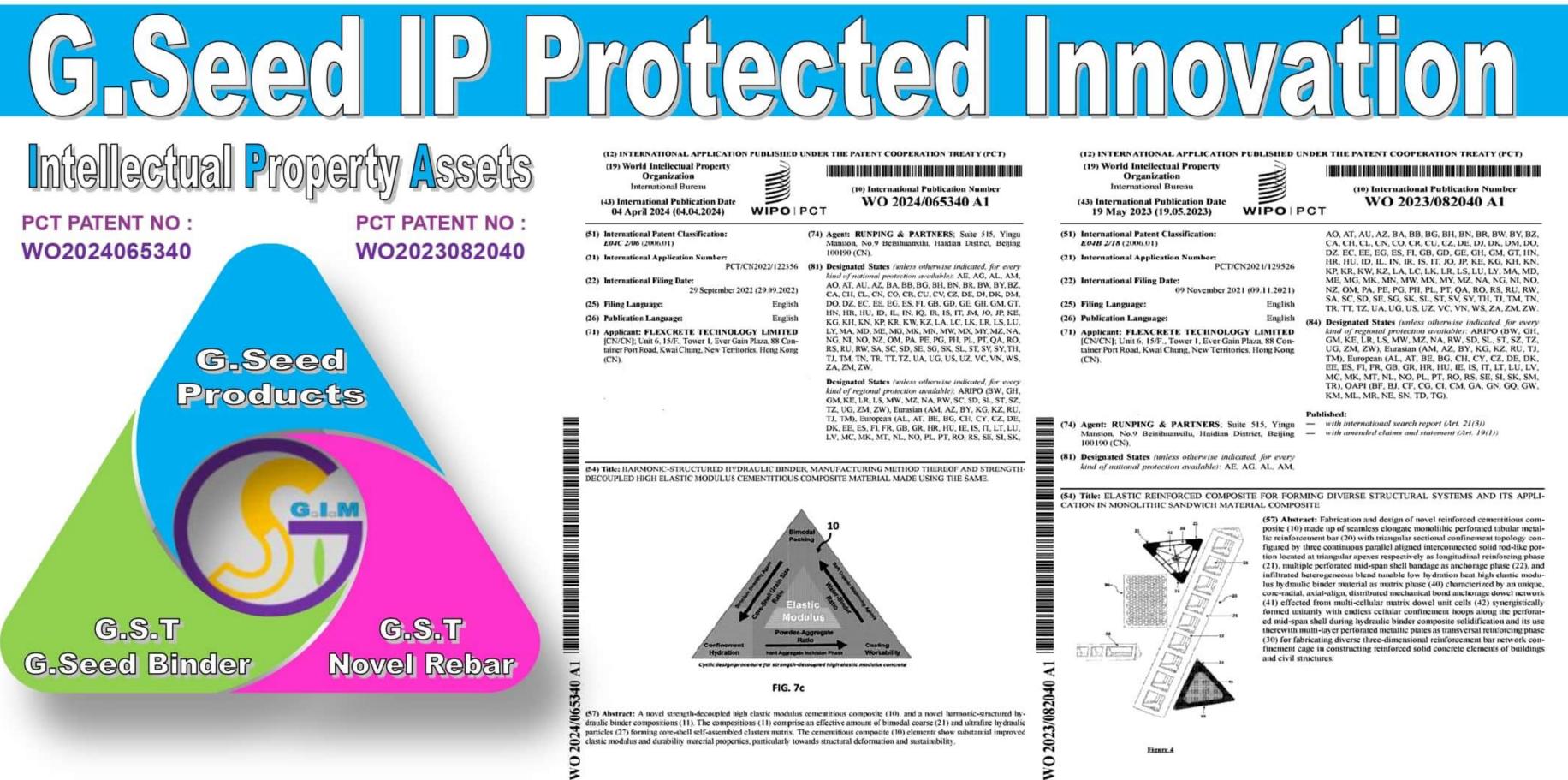


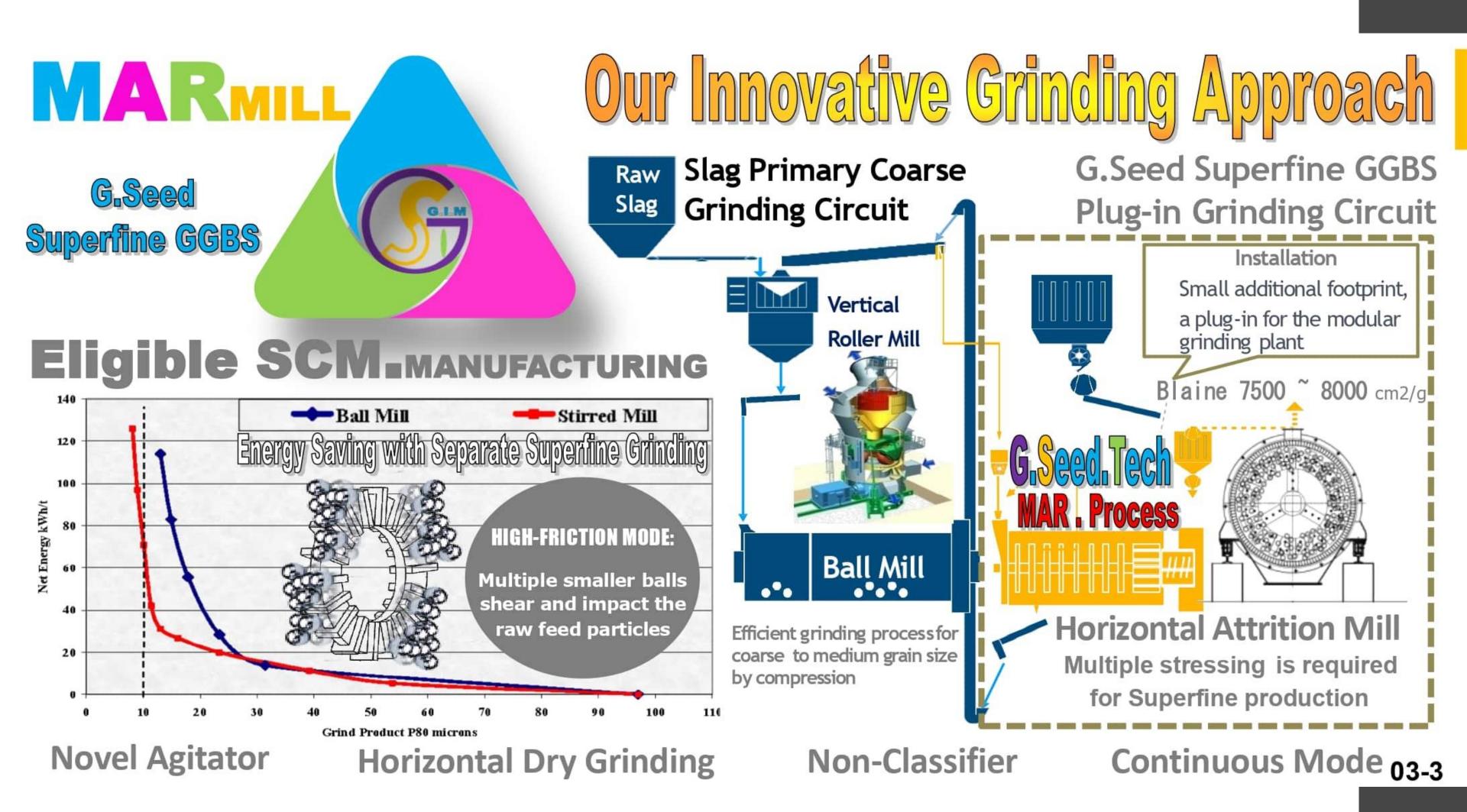
Impact of w/b ratio and specific surface on the capillary porosity

3. High Fineness GGBS Carbonation Resistance

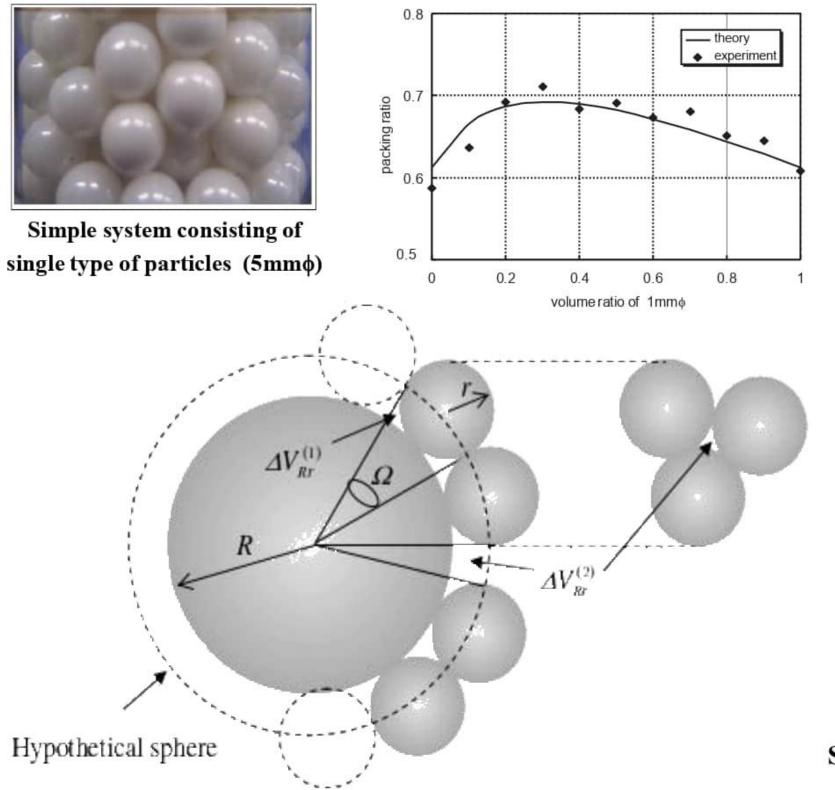
Slag %, Slag Fineness, Compressive Strength and W/B ratio on Carbonation Depth

Superfine	GGBS	Fineness	and	Substitution	R
-----------	------	----------	-----	---------------------	---


	Туре		8 95 GGB8 4000	8	Ground granulated blast-furnace slag 6000			
	Blaine specific surface area (cm ² /g)	3000	VII .	< 5000	5000	VII	< 7000	
	Substitution ratio (%)	35	50	70	35	50	70	
Property	Fluidity	0	0	0	O	O	O	
of	Bleeding	0	0	\bigtriangleup	O	O	O	
fresh concrete	Setting delay effect	O	O	Ø	O	O	O	
fresh concrete	Adiabatic temperature rise	_	_	Ø	_	_	Ø	
	Heat generation rate restraint	0	O	Ø	0	0	O	
Property	Initial strength	0	\triangle	\triangle	0	0	\triangle	
of	28 days strength	0	0	\triangle	0	O	O	
	Long-term strength	0	O	Ø	0	O	O	
strength	High strength	0	\triangle	\bigtriangleup	0	O	O	
	Drying shrinkage	0	0	0	0	0	0	
Development	Carbonation	—	-	\bigtriangleup	_	-	\triangle	
Property	Freeze thaw	0	0	0	0	0	0	
of	Water-tightness	0	O	O	0	O	O	
durability	Salt shield	0	O	O	0	O	O	
·	Seawater resistant	0	O	O	0	O	Ø	
	Acid and sulfates resistant	0	O	Ø	0	O	O	
	Heat resistant	0	0	0	0	0	0	
	Alkali-silica restraint	0	O	Ø	0	O	O	
	Abrasion resistance	0	0	0	0	0	O	


• : At the same level or a little good property is provided.

Sate On Concrete Properties

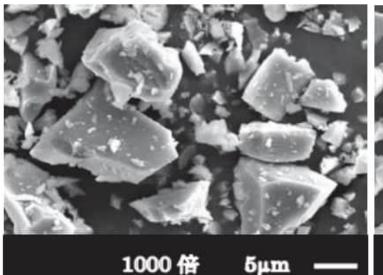

 \triangle : Attention is necessary for use.

- : Property varies according to a condition.

Core-Shell Microstructure - Local Dense Packing

Packing density of mixed-particle system comprising particles with two different radii. The horizontal axis represents the volume ratio of particle diameter of 1 mm.

Packing of spheres with radius r in direct contact with sphere with radius R.



System with particles having two different diameters particles $(1 \text{ mm}\phi : 5 \text{ mm}\phi = 3:7)$

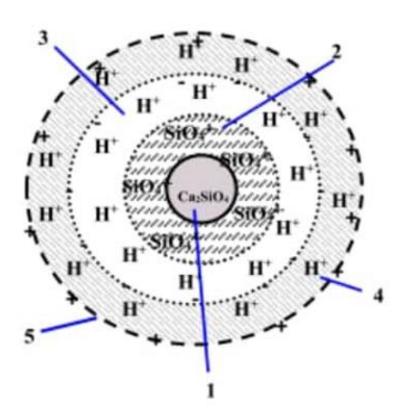
Japan GGBS Slag Activity Index And Blaine Fineness

BF8000

BF4000

----- BF30000

BF11000

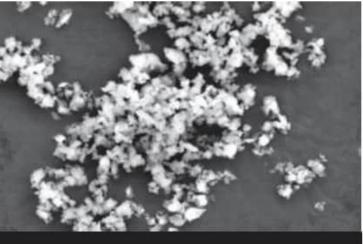

BF4000

5µm

BF8000 BF18000 1000倍 5µm

高炉スラグ微粉末の種類および物性

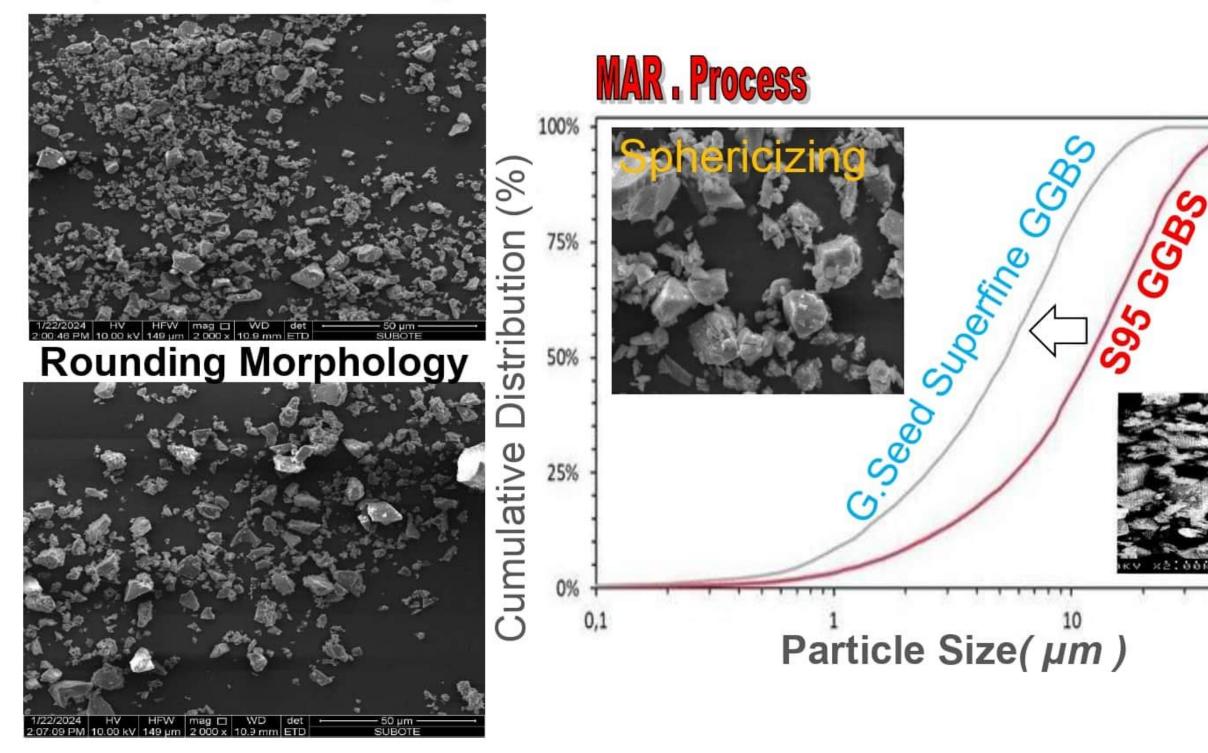
			v sev veren vyským sev		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Productio	on Using			化学 成分	試驗値	JISA 6206 の規定値			
Air Classi	fier	BF4000 BF8000 BF11000 BF18000 BF30000		BF30000	(%)				
A. Costo in	-						ig.loss	0.55	3.0 以下
密度(g/cm ³)		2.92	2.92	2.92	2.92	2.92	insol	0.64	-
比表面積	(cm^2/g)	4830	8180	10800	18050	29620	SiO ₂	32.7	-
والكراها واعتدادكما المتعالي والمكارك المرامة	يسعد فالانتساط وترقيقا وتنتقلت وتبقنا وال		1		the second second second	20020	Al ₂ O ₃	13.4	-
平均粒径(µm)		9.6	5.2	4.0	2.0	1.0	Fe ₂ O ₃	0.5	-
フロー値	82.(%)	100	99	98 G.S	eed 93	86	CaO	41.6	-
	1				•	and the second se	Na ₂ O	0.22	
活性度	7日	67	98	100 1	10 154	164	K ₂ O	0.28	
指数	28日	99	112	128 14	138	138	MgO	6.9	10以下
Station and Stationard				100 1	100	100	SO ₃	0.34	4.0以下
(%)	91日	105	120	122	118	111	Cl ·	0.0003	0.02以下
	dia and a state of the state of				die and a second se				



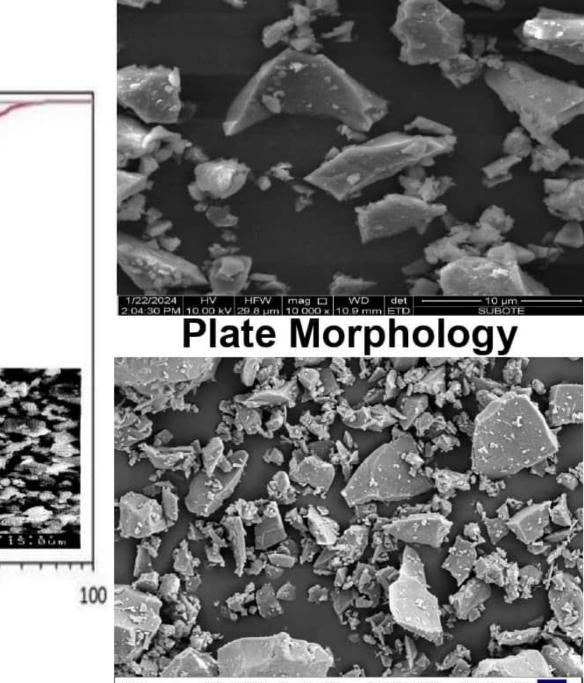
1000倍

5µm

BF30000



1000倍 5µm


高炉スラグ微粉末の 化学成分

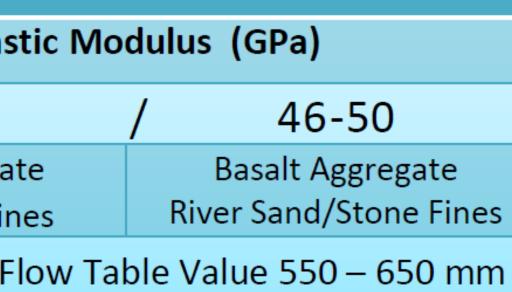
Superfine GGBS Slag

S95 GGBS Slag

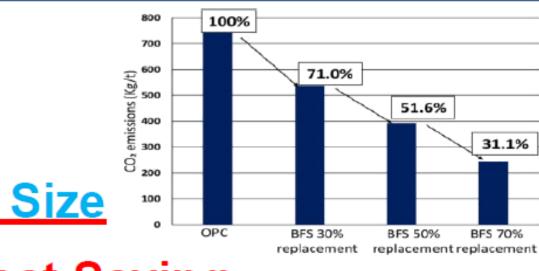
EHT = 10.00 kV Signal A = SE2 Date: 17 Jan 2022 WD = 17.3 mm Mag = 1.00 K X LIRR-Germini300

Superfine GGBS Fineness and Substitution Rate On Concrete Properties

	Туре		S 95 GGBS 4000		Ground gra	nulated blas 6000	t-furnace slag	G.S	GGBS	
	Blaine specific surface area (cm ² /g)	3000	<pre> ¥ </pre>	< 5000	5000	!</th <th>< 7000</th> <th>7000</th> <th><pre>VII</pre></th> <th>< 10000</th>	< 7000	7000	<pre>VII</pre>	< 10000
	Substitution ratio (%)	35	50	70	35	50	70	35	50	70
Property	Fluidity	0	0	0	O	O	O	O	O	0
of	Bleeding	0	0	\bigtriangleup	0	O	O	O	O	O
fresh concrete	Setting delay effect	O	O	O	0	O	O	0	O	O
resil concrete	Adiabatic temperature rise	_	_	O	_	_	O	_	_	O
	Heat generation rate restraint	0	O	O	0	0	Ø	0	0	0
Property	Initial strength	0	\bigtriangleup	\bigtriangleup	0	0	\triangle	0	0	0
of	28 days strength	0	0	\bigtriangleup	0	Ø	O	O	O	Ø
	Long-term strength	0	O	O	0	O	O	O	O	O
strength	High strength	0	\bigtriangleup	\bigtriangleup	0	O	O	O	O	O
	Drying shrinkage	0	0	0	0	0	0	0	0	0
D (Carbonation	_	—	\bigtriangleup	—	-	\bigtriangleup	—	—	Δ
Property	Freeze thaw	0	0	0	0	0	0	0	0	0
of	Water-tightness	0	O	O	0	O	O	0	O	O
durability	Salt shield	0	O	O	0	O	O	0	O	O
č	Seawater resistant	0	O	O	0	O	O	0	O	O
	Acid and sulfates resistant	0	O	O	0	O	O	0	O	O
	Heat resistant	0	0	0	0	0	0	0	0	0
	Alkali-silica restraint	0	O	O	0	O	O	0	O	O
	Abrasion resistance	0	0	0	0	0	O	0	O	O


 \circ : At the same level or a little good property is provided.

Property varies according to a condition.


G.Seed Concrete

Binder Content	Compres	sive Strength (Mpa)	Elas
450Kg-540Kg	Grade (C 60-C90 (Cylinder)	40-45
Aggregate Type :			Granite Aggrega
			Granite Stone Fir
Water/Bind	der Ratio :	0.27 – 0.32	Workability : F
Paste		Elastic Modulus	+ Flexural Toughr
Performance		Gel Morphology	Defect Leng

- Low Capital Carbon Approach ۲
- Increased Service Life and Durability ۲
- **Reduce Steel Reinforcing And Structural Member Size** ۲
- And Most Importantly=> **Carbon Reduction & Cost Saving ٠

+ Compressive Strength ness **Volume Porosity** gth

CONCRETE STRENGTH AND MODULUS OF ELASTICITY engineer design value

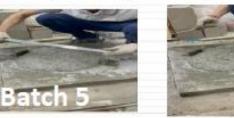
Code of Practice for Structural Use of Concrete

Concrete		E _c (kN/mm²)
Strength Grade	For general use	For checking overall building deflection (see note 2)
C20	18.7	20.5
C25	20.5	22.2
C30	22.2	23.7
C35	23.7	25.1
C40	25.1	26.4
C45	26.4	27.7
C50	27.7	28.9
C55	28.9	30.0
C60	30.0	31.1
C65	31.1	32.2
C70	32.2	33.2
C75	33.2	34.2
C80	34.2	35.1
C85	35.1	36.0
C90	36.0	36.9
C95	36.9	37.8
C100	37.8	38.7

HPC & (UHPC (Conce		9	E-Val		Chin	2	Code				
	超高	强混凝	土的	强	度和弹	性模量	t (MP	a)					
混	疑土强度等	等级fcu.k	C7	70	C80	C90	C10	00	C110				
	轴心	亢压 f_{ck}	45	.0	51.0	56.0	61.	0	67.0				
标准值	轴心	抗拉 f_{tk}	3.	0	3.1	3.3	3.5	5	3.8				
	轴心	亢压 fcd	31	.8	36.1	40.0	43.	7	48.0				
设计值	轴心	抗拉 ftd	2.	1	2.2	2.4	2.5	;	2.7				
弹性	生模量 Ec	(×10 ⁴)	3.	7	3.7	3.8	3.9)	4.0				
UHPC 立	UHPC 立方体抗压强度标准值 Ucuk 不应小于 120MPa												
强度等级	UC 120	UC 14	40	U	IC 160	UC	180	J	JC 200				
u _{cuk} (MPa)	120	140)	160		180		200					
f _{Uck} (MPa)	84	98			112	12	6		140				
f _{Ucd} (MPa)	58	68			77	8	7	97					
	Uł	IPC 弹	生模	量	E_c (×1	0 ⁴)							
强度等级	UC 120	UC 1	40	Į	JC 160	UC 1	180	J	JC 200				
彈性模量	4.2	4.	5		4.8	5.	1		5.4				

HPC & U	HPC C	Sonce	ete		E-Val		Chin	2	Code				
-	超高引	虽混凝	土的	强	度和弹	自性模量	t (MF	a)					
混凑	是土强度等	等级f _{cu,k}	C7	0	C80	C90	C10	00	C110				
轴心抗压 f _{ck} 45.0 51.0 56.0 61.0 67.0													
标准值	轴心抗		3.0)	3.1	3.3	3.5	5	3.8				
	轴心抗	〕压 fcd	31.	.8	36.1	40.0	43.	7	48.0				
设计值	轴心抗		2.1	[2.2	2.4	2.5	5	2.7				
弹性模量 E _c (×10 ⁴) 3.7 3.7 3.8 3.9 4.0													
UHPC 立	UHPC 立方体抗压强度标准值 Ucuk 不应小于 120MPa												
强度等级	UC 120	UC 14	10	U	C 160	UC	180	J	JC 200				
u _{cuk} (MPa)	120	140		160		180			200				
f _{Uck} (MPa)	84	98			112	12	26		140				
f _{Ucd} (MPa)	58	68			77	8'	7		97				
	UH	PC 弹性	主模	量	E_c (×1	0 ⁴)							
强度等级	UC 120	UC 1	40	J	JC 160	UC	180	J	JC 200				
彈性模量	4.2	4. 8	5		4.8	5.	1		5.4				

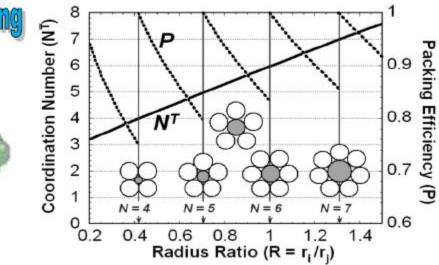
Performance of G.Seed Concrete


Green Active Robustness Concrete **Binder 420 - 520Kg (50% G.Seed)**

			Design Of 1m ³ Concrete											Compressive Strength (MPa)				
Batch	Mix Volume	Cement (KG)	Flexcrete- UFGGBS (KG)	S/F (KG)	Aggregates (5-10mm) (KG)	River Sand (KG)	Z-Additives (KG)	A-Catalyst (KG)	Water (KG)	SBT RW-BP (L)	HEMI (L)	PCA-1 (L)	Remarks	12-Hour	24-Hour	7-Day	28-Day	Elastic Modulus
4th	0.04	210	210	980	770	0	0	0	134.4	1	2	7.5	Cement Reduction	Nil	18 MPa	91 MPa	99 MPa	48.5 Gp
5th	0.04	260	234	880	770	0	26	0	166.4	1	2	6	Zeolites	Nil	28 MPa	74 MPa	79 MPa	47.0 Gp
6th	0.04	260	260	880	770	0	0	0	166.4	1	2	6		1.5 MPa	18 MPa	88 MPa	96 MPa	46.8GP

Customer Sample No.	Batch 4-1G		
HKT Sample No.	P24C00165		
Date Cast	6 Feb 2024		
Age at test (days)	28		
Condition of cylinder' when received	Dry		
Curing and storage report	Curing in laboratory at 27+/-3°C		
Type of measuring instrument	Dial Gauge		
Gauge length (mm)	150.9		
Diameter of cylinder (mm)	150.0		
As Received density * (kg/m")	2400		
Concrete cube strength (MPa)	102.2		
Maximum applied stress (MPa)	27.2		
Compressive strength of cylinder (MPa)	93.34		
Static modulus of elasticity (MPa)			
Static modulus of elasticity (GPa)			

Customer Sample No.	Batch 5-1G
HKT Sample No.	P24C00167
Date Cast	6 Feb 2024
Age at test (days)	28
Condition of cylinder' when received	Dry
Curing and storage report	Curing in laboratory at 27+/-3°C
Type of measuring instrument	Dial Gauge
Gauge length (mm)	150.9
Diameter of cylinder (mm)	150.0
As Received density * (kg/m")	2400
Concrete cube strength (MPa)	80.6
Maximum applied stress (MPa)	20.98
Compressive strength of cylinder (MPa)	76.77
Static modulus of elasticity (MPa)	43,500
Static modulus of elasticity (GPa)	47.0



Customer Sample No.	Batch 6-1J		
HKT Sample No.	P24C00170		
Date Cast	6 Feb 2024		
Age at test (days)	28		
Condition of cylinder' when received	Dry		
Curing and storage report	Curing in laboratory at 27+/-3°C		
Type of measuring instrument	Dial Gauge		
Gauge length (mm)	150.8		
Diameter of cylinder (mm)	150.0		
As Received density * (kg/m")	2400		
Concrete cube strength (MPa)	93.4		
Maximum applied stress (MPa)	24.9		
Compressive strength of cylinder (MPa)	97.96		
Static modulus of elasticity (MPa)	46,800		
Static modulus of elasticity (GPa)	46.8		

Imī	M Green Active Robustness Concrete							
Nam	Image: Second System Binder : 520 KG/M3 (50% G.Seed Superfine GGBS) Image: Second System Second System Image: Second System Second Syste							
A a a a a a a a a a a a a a a a a a a a	No.	w/b	S/A	Paste	Bulk Density	Flow table value	Compressive Strength	Elastic Modulus
				volume	Kg/m3	mm	MPa	GPa
Done	Batch 4-2	0.307	0.53	0.35	2370	300	<u>55.7</u>	<u>42.5</u>
AT 785	M10-0.34	0.320	0.50	0.34	2400	400	<u>66.1</u>	<u>42.2</u>
Test	M10-0.34-1	0.306	0.50	0.34	2400	550	<u>99.0(56d)</u>	<u>45.8</u>
F	M10-0.34-2	0.306	0.50	0.34	2405	530	98.0	44.8
- Merilian	M10-0.34-1-Standard 550mm flow table value $\int_{A_1 + b_2}^{Workability Robustness} \int_{A_2}^{\Phi_{m1}} \int_{A_2}^{\Phi_{m1}} \int_{A_2}^{\Phi_{m2}} \int_{A_1 + b_2}^{\Phi_{m1}} \int_{A_2}^{\Phi_{m2}} \int_{A_2 + b_2}^{\Phi_{m1}} \int_{A_2}^{\Phi_{m2}} \int_{A_2 + b_2}^{\Phi_{m1}} \int_{A_2 + b_2}^{\Phi_{m2}} \int_{A_2 + b_2}^{\Phi_{m1}} \int_{A_2 + b_2}^{\Phi_{m1}} \int_{A_2 + b_2}^{\Phi_{m2}} \int_{A_2 + b_2}^{\Phi_{m1}} \int_{A_2 + b_2}^$					Local Packing - Glo	Coordination Number 0.2 0.4 0.6 0.2 0.4 0.6	Packing Efficiency (P) 0.9 (R) 0.9 (R) 0.9 (R) 0.9 (R) 0.9 (R) 0.9 (R) 0.7 (R) 0.6 (R) 0.6 (R) 0.6 (R) 0.6 (R) 0.6 (R) 0.7 (R) 0.6 (

High Grade – No Silica Fume Mix

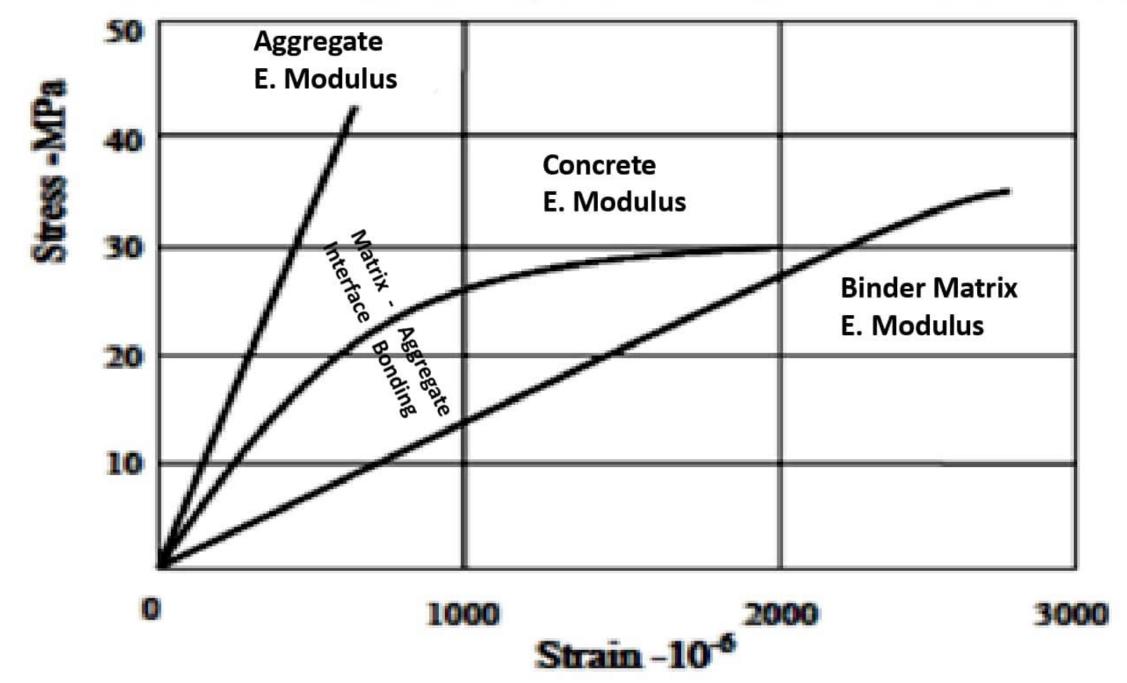
14 Days Test Result

Plastic Density (Kg M)	2390			
Yield	0.999			
nitial (Stump Stump Flow	225			
Cube Age (Day)	Strength	Test Date		
3	84.5, 84.7	18/03/2024		
7	103.2.105.6	22/03/2024		
28		12:04/2024		

the second se			
(b) Determination of Loading	Stress	Loading Force*	
Upper Loading Stress ($\sigma_a = f_c / 3$)	3/.2 (MPa)	561.) (kN)	311
Basic Stress ($\sigma_{\rm b} = 0.5 {\rm MPa}$)	0 (MPa)	1.8 (kN)	11
Cross-sectional area of Cylinder, (mm ²) *Loading force shall be calculated by multiplyin	a the stress but the server and	195	1
*Loading force shall be calculated by manuplyin	g me suces by the cross-section	ar alea of cynnoer.	
(b) Determination of Strain Reading	1 st Cycle 2 nd Cycl	3 rd Cycle Average	11
Strain under the Upper Loading Stress (£ 2)	-441 -448	ALC ALT	- 949
Strain under the Basic Stress (E)	第二 5年	200 -325	1-347
	and the states	Contraction of Contraction	
The Static Modulus of Elasticity in Compression	52 GPa	2	
$[E_c = (\sigma_a - \sigma_b) / (\varepsilon_a - \varepsilon_b) *1000, GPa]$	JZGFa	\$2.0	
	444 845		
Compressive Strength of Test Specimen (MPa)	TIG MIPS	10112	11
	TTOIVILA		
	116 MPa	110.	- 1
Contraction Technol Machines Operin Machines		.3080	-1.
Compression Testing Machine, Strain Measuring		-32K)	- .
Compression Testing Machine, Strain Measuring		-3215)	- .
Compression Testing Machine, Strain Measuring		-32K)	- .
		-32K)	- .
Compression Testing Machine, Strain Measuring ested By 測試人:		-32K)	-
		-32K)	

Lab Trial No.			LTM595	5	
Date Cast	15/03/2024				
Concrete Mix		\$0D	200085	+CSF	
Stump Flow			200		
Votume (M)	Design (1m3)	Finial (1m3)	0.045		
Centent (Kg)	273	273	12.29	ž.	After
PFA (Kg)	0	0	0.00	4 Mju	Adjust (*/-)
GGBS (Kg)	274	274	12.33	-	1000
Silica Furne (Kg)	0	0	0.00		
20mm (Kg)	565	565	25.43	0.03	25.45
10mm (Kg)	435	435	19.58	0.18	19.75
CRF (Kg)	410	410	18.45	0.37	18.82
R.S (Kg)	270	270	12.15	0.30	12.45
Water (Kg)	150	150	6.75	0.87	5.82
RW-BP	1.85	1.85	\$3ml	RW-BP	
PCA-I	6.56	6.33	385mt	PCA-I	
HEMI	2.50	2.50	113ml	HEM	
	0.00	0.00	Omit	-	
	0.00	0.00	Oat	-	
*	0.00	0.00	Og	-	
40	0.00	0.00	Og	-	
Total Weight (Kg M)	2355	2388			
AC	3.07	3.07			
W/C	0.27	0.27			
(b) Determination of Loading			Stress	Loading Force	
Upper Loading Stress ($\sigma_s = f_c/3$)		3	MPU (MPU)	358.4 (b) 2 8 (b)	
Basic Stress ($\sigma_{\rm h}$ = 0.5MPa) Cross-sectional area of Cylinder, (rm	m ¹)		17699	· [
*Leading force shall be calculated by	y multiplying th	ic stress by the	e cross-sectional	l area of cylind	er.
(b) Determination of Strain Reading		140	yele 2 nd Cycle	3 rd Cycle Av	crage
Strain under the Upper Loading Street	55 (£ <u>.</u>)	-343	-179 -24 -36	-761-215-21	3-570
Strain under the Basic Stress ($\varepsilon_{\rm b}$)		73	221 27 176	20 176 12	1 1932
The Static Modulus of Elasticity in C	Compression	50 5	GPa	HAN F	ntll
$(E_c = (\sigma_a - \sigma_b) / (\varepsilon_a - \varepsilon_b) * 1000_b$	GPa]		UI U	1000	0.0
Compressive Strength of Test Specin	nen (MPa)	071	MPa	6.8	
Compression Testing Machine, Strain					
Confrontine					
Fested By 測試人:	-				
LENER DA MODALA					

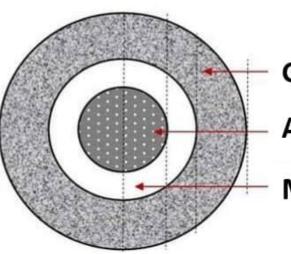
Com


Elastic

Typical High Strength Concrete Mix

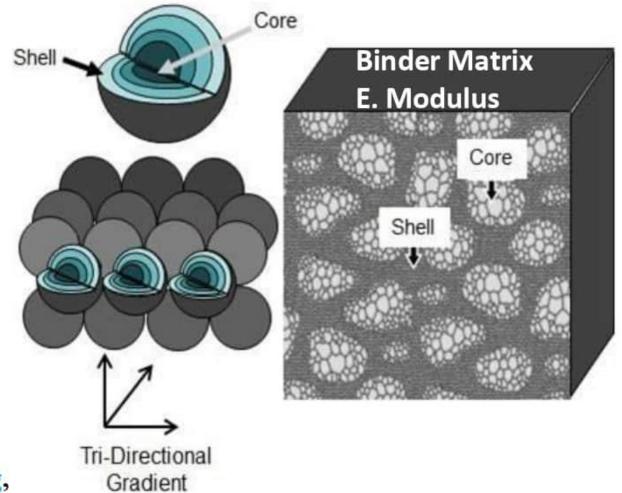
	NAMI's High Strength Concrete						
	C80	C90	C100				
npressive Strength		28 Days					
	98.4MPa	111.8MPa	119. 4MPa				
modulus	37.9GPa	39.7GPa	40.7GPa				

Tailoring Concrete Modulus Of Elasticity


The moduli of most materials depend on two factors: bond stiffness, and the density of bonds per unit volume.

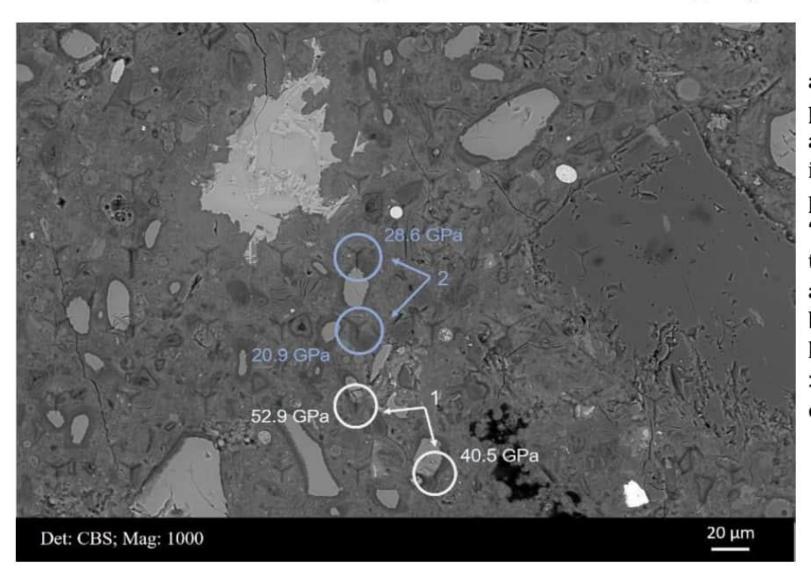
Diamond has a very high modulus because the carbon atom is small (giving a high bond density) and its atoms are linked by very strong springs (S 1/4 200 N/m).

Metals have high moduli because close-packing gives a high bond density and the bonds are strong, though not as strong as those of diamond.

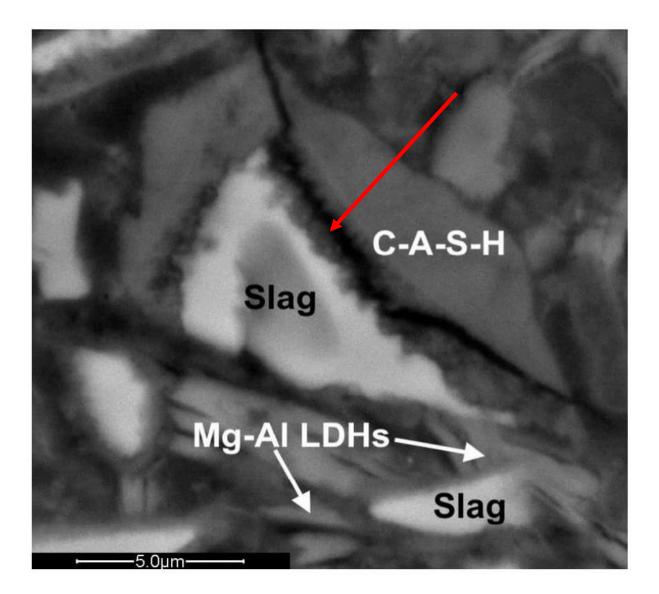


G.Seed Core-Shell Matrix

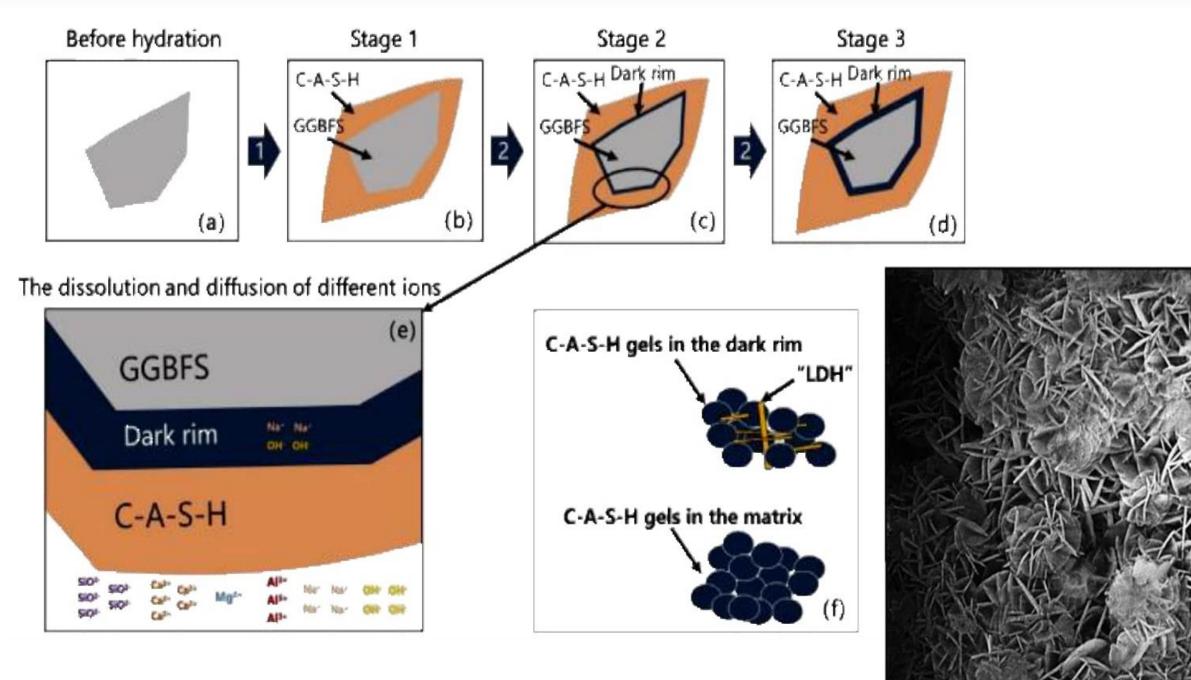
Aggregate

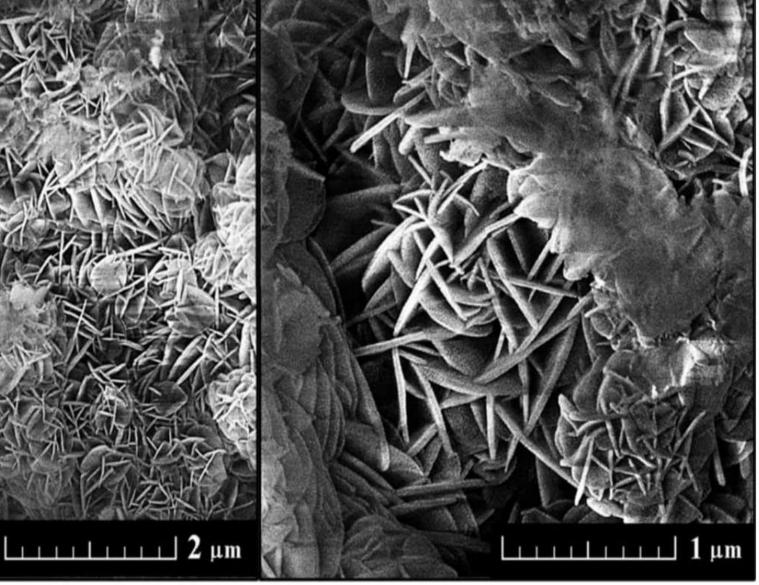

Matrix-Aggregate ITZ

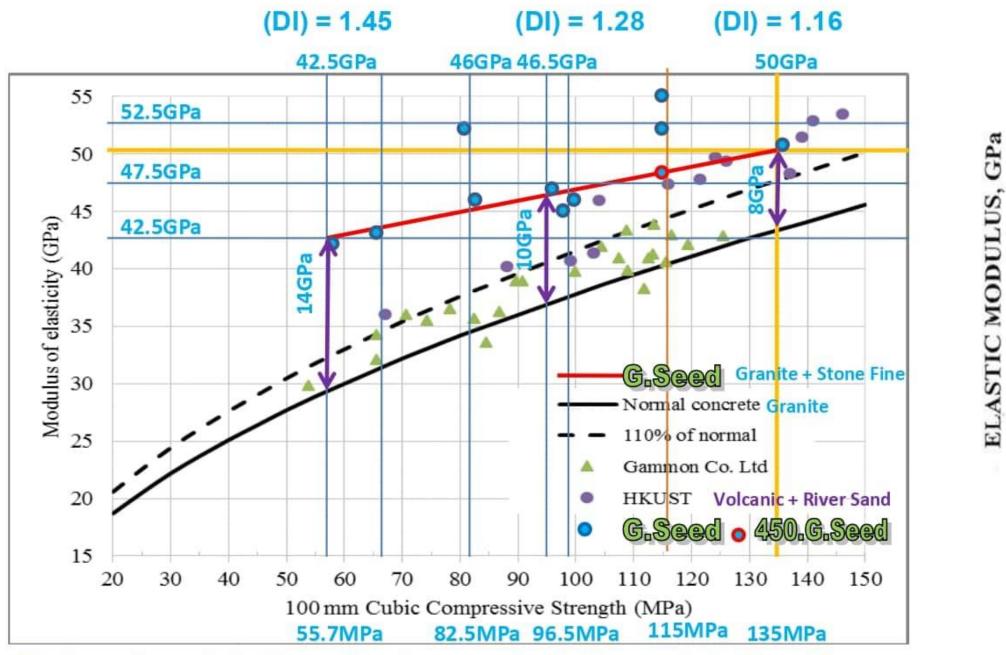
GGBS Grain Size And Hydration Characteristics


MicroMechanical Properties of Slag Rim Formed in Cement-Slag System

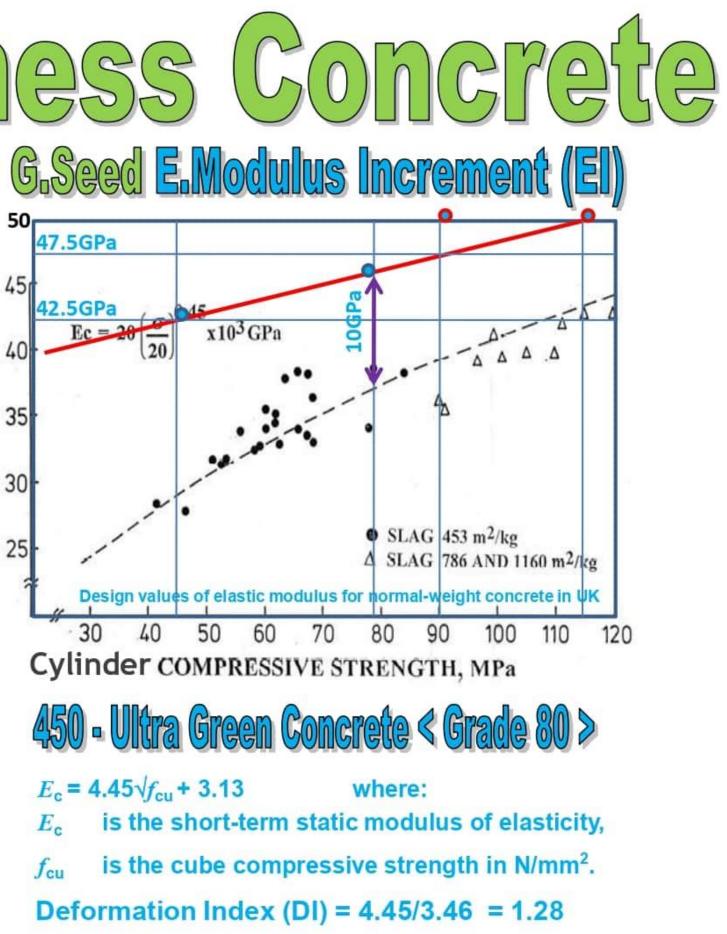
Slag rim mainly consists of secondary precipitations such as C–S–H gel phase and hydrotalcite- like phase, which originate from the hydration of slag. It was found that, compared to the C-S-H gel phase, slag rim showed about a 15 GPa higher modulus of elasticity.




The hydrotalcite-like phase, as the main precipitation of pozzolanic reaction between slag portlandite, is closely and intermixed with the C-S-H gel phase, forming the so-called 'inner' products of slag within the original slag region. The rims around unreacted slag particles, thicker, and totally become hydrated slag grains at a size of >10 µm are also frequently observed.



Layered Double Hydroxides - LDH Reference


D

Design values of elastic modulus for normal-weight concrete in Hong Kong

 $E_{\rm c}$ = 3.46 $\sqrt{f_{\rm cu}}$ + 3.21 where:

- E_{c} is the short-term static modulus of elasticity,
- is the cube compressive strength in N/mm². f_{cu}

30

25

Thank You